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ABSTRACT 
The position paper considers three methodological 
challenges for Engineering Interactive Computing Systems 
(EICS): 1) better integration of design theories and 
practices from HCI and related fields into software 
engineering practices, 2) novel concepts to overcome 
limitations due to the separation of the user interface part 
and the application core of interactive systems, 3) advanced 
methods and tools for developing domain and user-specific 
interactive systems. It is suggested to create an EICS 
roadmap as result of the workshop.  

ACM Classification Keywords 
H.5 Information Interfaces and Presentation (e.g., HCI), 
H.1.2 User/Machine Systems, D.2.2 Design Tools and 
Techniques, D.2.10 Design, D.2.11 Software Architectures 

INTRODUCTION 
As the name would suggest, EICS is about providing 
methods, techniques, and tools to systematically develop 
interactive computing systems (ICS) of high quality. Yet, 
Ann Blandford asked in her keynote at EICS’2013 what 
engineering for interactive computing systems is. She 
pointed out that standard development practices for 
interactive systems such as iterative design are not 
particularly assigned to EICS and that the community needs 
to develop and maintain a better shared understanding of 
the nature, value and role of EICS  to avoid becoming 
narrow and irrelevant [3].  

‘Traditionally’, EICS approaches apply knowledge from 
computer science, software engineering (SE), and human-
computer interaction (HCI) to design, implement, and 
reason about ICS and, in particular, user interfaces. Topics 
that are specifically addressed by EICS related conferences 
include ICS modeling, task-based and model-based design 
of user interfaces, formal methods for HCI, specification 
formalisms for interaction techniques, design spaces for 
organizing design parameters of advanced interaction 
techniques, and software architecture models and tools for 
designing, developing, and evaluating advanced user 
interfaces. In the workshop call, EICS is described as a 
“multidisciplinary endeavor positioned at the intersection of 
HCI, software engineering, interaction design, and other 
disciplines”. These disciplines all contribute in one or 
another form to the “design, evaluation, and implemen-

tation of interactive computing systems for human use”1

Figure 1

 
and consider themselves also as multidisciplinary. For 
example, SE is described as rooted in mathematics, 
computer science, engineering, natural sciences and 
humanities. Similar diagrams to the one in  can be 
found in almost every schoolbook about interaction design 
or HCI. Each such diagram may be questioned in terms of 
mentioned influences and depicted intersections (e.g. 
Human Factors and HCI have no intersection in Figure 1). 

        

Figure 1: The disciplines surrounding interaction design (from 
[25]). 

Figure 2 mentions, among many other disciplines, HCI and 
interaction design on the design side and SE on the 
technology side. EICS is not mentioned explicitly.  

Before we further discuss the role of EICS and the 
expectations on ICS engineers, we would like to review the 
positioning of task analysis given in [5]. 

Excursus: Diaper’s Understanding of Task Analysis for 
HCI  
Dan Diaper considers in [5] HCI as “engineering discipline 
rather than science because its goals are inherently practical 
                                                           
1 The quote is an essential part of the definition of HCI as 
discipline (see, e.g., http://hcibib.org/). 
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and involve satisfying design criteria.” He suggests “that 
the historical division between HCI and software 
engineering is unfortune, as both study the same sort of 
systems for similar purposes.” The difference between HCI 
and SE is “merely one of emphasis, with SE focusing more 
on software and HCI more on people” [5]. Diaper 
distinguishes between a narrow view on HCI focusing on 
the user-computer interface and a broad view on HCI 
considering “everything to do with people and computers” 
[5]. The latter view also includes the functionality of 
software systems because it affects the allocation of 
functions and the division of labor profoundly. Diaper 
thinks that task analysis (TA) is at the core of HCI and has 
to be better integrated into SE because software engineers 
and system analysts often do TA implicitly and poorly.   

 

Figure 2: Disciplines Contributing to Interactive Systems 
Design (from [1]). 

There may be few people who consider HCI as engineering 
discipline, and there may be people who do not see TA at 
the core of HCI. One may agree or disagree with Diaper’s 
views, but he points out some important issues. First, when 
it comes to the development of ICS, a fusion of various 
research fields is needed. Second, while each discipline 
comes with its own practices, attitudes, and interrelations, 
their focus of research and some of the divisions have also 
to be explained historically. Third, ICS are more than their 
user-computer interfaces. And a last point should be 
mentioned here. For Diaper, design is “a goal-directed 
activity involving deliberate changes intended to improve 
the current world.” Models of the current and of envisaged 
worlds are required in this process to develop and to 
implement ideas of change [5].  

METHODOLOGICAL CHALLENGES FOR EICS 
EICS should contribute to a more effective integration of 
SE approaches and of approaches from HCI, interaction 
design, and other fields. Engineering user interfaces or 
novel interaction techniques is one important area of EICS, 
but it only covers the above mentioned narrow view on 
HCI. EICS conference topics such as requirements 
engineering and software architectures for interactive 
systems, integrating interaction design into the software 
development process, and engineering user experience 
better reflect the broader view on HCI.  

What should be expected from ICS engineers? They need to 
acquire profound background knowledge in HCI and 
related fields which they are able to apply in engineering 
user interfaces. They also must be able to convey HCI 
related problems to other software developers and SE 
related problems to interaction designers and HCI experts 
so that these problems can be tackled in a holistic way.  

In the remainder of this position paper, we discuss a better 
integration of design theories and practices into SE 
practices and consider the role of external design 
representations in this process. In addition, two other 
methodological challenges are mentioned that could be part 
of an EICS roadmap.  

– Novel concepts to overcome limitations due to the 
separation of the user interface part and the application 
core of interactive systems. 

– Advanced methods and tools for developing domain and 
user-specific ICS. 

Integration of Design Theories and Practices into 
Software Engineering Practices 
Gould and Lewis are among the first exponents of user-
centred design ideas. In a paper published 1985, they claim 
the need for an early focus on users and tasks, empirical 
measurement, iterative design and prototyping, and 
integrated usability design [15]. Until now these ideas are 
not fully integrated into SE practices. In [21], SE is 
characterised as “both a creative and a step-by-step process, 
often involving many people producing many different 
kinds of products”. However, existing SE methods and 
recommended intermediate products of software projects 
reveal that the focus in SE is still to a large extent on 
functional aspects of software systems and on problem 
solving. Even requirements documents contain in most 
cases only the requirements on the software system under 
development, but rarely models of the current world or 
descriptions of other aspects of the envisaged world than 
the technical system (see the previous section).   

Since the 1990ies, HCI puts more emphasis on design 
practices and theories (and interaction design developed as 
an own discipline).  We are familiar with the main ideas of 
scenario-based design [24], participatory design, contextual 
design [2], and design rationale [19]. We know theoretical 
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frameworks and concepts such as distributed cognition [16] 
and situated action [27] and know about their consequences 
on design. The interplay between problem setting and 
problem solving and the role of external design represen-
tations are better understood [22,26,12]. However, SE 
practices are not fully integrated into the above mentioned 
design approaches. In [11], Dix et al. state, for example, 
that “the ideal model of iterative design, in which a rapid 
prototype is designed, evaluated and modified until the best 
possible design is achieved… is appealing” but that it is 
also important to be able to overcome bad initial design 
decisions or to understand the reasons behind usability 
problems and not just detect the symptoms. The authors 
recommend using iterative design “in conjunction with 
other, more principled approaches to interactive system 
design” (see a discussion in [8]).  

We see one important role of EICS in bridging the gap 
between SE practices and design practices and theories 
from HCI and interaction design. Our own contributions are 
presented in [7,8,9,10]. For example, a lightweight use of 
formal methods is suggested in [9,10] to integrate 
evolutionary and exploratory prototyping of interactive 
systems in a systematic way. Evolutionary prototyping is 
especially recommended in SE when requirements of an 
application cannot be fully understood in advance [4]. 

 

Figure 3: Overview of the model-guided prototyping approach 
suggested in [9,10].  

Figure 3 illustrates the overall approach. The white arrows 
and the boxes indicate the evolution of the prototypical 
implementation over time. This prototype has to be 
deliberately underdesigned with respect to design issues 
where a clearer understanding of the problem and possible 
solutions needs to be obtained. In each iteration step, 
selected open design questions are explored by the 
development of alternative solutions to extend the 
evolutionary prototype. A technique called parallel model-
guided prototyping is applied to develop these ‘throw-away 
extensions’ and to allow their assessment with both 
analytical and empirical means. Models of the current and 
envisaged world guide and constrain this process. In this 
way, an intertwined problem setting and problem solving is 
supported (see [9,10] for more details). 

Co-Evolution of Different Design Representations  
Although it is unquestioned by all contributing disciplines 
that in interactive systems design different kinds of design 
representations (models) are needed, their effective co-
evolution and coupling remains problematic. In [23], 
Robinson and Bannon show effects of using representations 
of work (see also Figure 4). They point out that such 
models pass through different groups and are used for 
different purposes (ontological drift). While analysts create 
and use descriptions of work to understand their nature and 
to redesign it, software developers are interested in deriving 
ICS specifications from such models, which when 
implemented become prescriptions for work (flip-over 
effect). 

 

Figure 4: Effects of using representations of work in the design 
process of ICS [23]. 

The position of EICS is depicted in Figure 4. Models of 
users, tasks, context of use etc. are applied to create, refine, 
test, assess, and validate system specifications. In [6,7], we 
argue that task-based design approaches in EICS often gear 
task models towards system specifications. Resulting 
negative effects are discussed, e.g., in [23,27]. However, 
ICS engineers should be familiar with a broad range of 
design representation and their possible interpretations to be 
able to mediate between the different stakeholders and their 
interests, especially between software engineers and HCI 
experts, interaction designers, and users2

                                                           
2 General limitations of notations and models are well revealed in 
[

.  

17] quoting Ferguson:  „In a wonderful book about mechanical 
and structural engineering, Eugene Ferguson complains that 
many engineering disasters have happened because modern 
engineers have been taught to pay too much attention to 
calculation and formal analysis of structures and too little to the 
physical reality of the world of which those structures are a part… 
In software engineering… we do pay a great deal of attention to 
techniques that are essentially notational, leaving us – like the 
engineers whose education Ferguson is criticising – paying too 
little attention to the incalculable complexity of engineering 
practice in the real world. Requirements are in the real world, not 
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ICS are More Than User Interfaces 
Separating the user interface from the remainder of the 
application is now standard practice in developing 
interactive systems [18]. While many EICS approaches 
focus on user interface design (and challenges of distributed 
UIs, multimodal UIs, the growing variety of devices and 
interaction techniques…  may have reinforced this trend), it 
is still a second-class issue in SE. Although a separation has 
many advantages, the development of the user interface and 
the functional core of an interactive system cannot be 
approached in a fully isolated way because certain usability 
concerns have to be considered already in the software 
architecture. Cancellation is a well-known example of an 
important usability feature which is often poorly supported 
in applications [18]. John et al. propose usability-supporting 
architectural patterns as a solution and as a means to 
educate software architects ([18], see also [13]). Such 
patterns describe the usability context (situation and 
potential usability benefits) and the problem (forces exerted 
by the environment and task, by human desires and 
capabilities, and by the state of the software system). In a 
pattern description, it is distinguished between a general 
solution in terms of general responsibilities that resolve 
above mentioned forces, and a specific solution that also 
takes into account the forces from prior overarching design 
decisions in a specific project context [18].   

The separation of the user interface part and the application 
core is even more problematic for systems supporting a 
flexible allocation of functions, for adaptive systems, or for 
systems that are developed in an evolutionary way. Novel 
concepts to overcome limitations of this separation have to 
be developed. 

Methods and Tools for Domain and User-Specific ICS 
EICS-conference topics also include: 
– Domain-specific languages for interactive systems, 
– End-user development of interactive systems, 
– User interface software and technologies for ambient 

assisted living, 
– Engineering complex interactive systems (e.g., large 

datasets, large communities, enterprise systems). 
This list indicates a third methodological, and perhaps also 
practical challenge. EICS approaches should demonstrate 
their applicability to specific domains and user groups.  

EXPECTATIONS ON THE WORKSHOP 
Roadmaps support the orientation of a field by giving an 
overview and highlighting open research issues. Good 
examples are presented in [14,20]. At the workshop, we 
would like to develop a shared view on an EICS roadmap. 
We think that it would be great to collaboratively create a 
                                                                                                 

in the machine. We must focus on them directly, and describe them 
conscientiously”.  

 

‘roadmap-paper’ after the workshop (which perhaps could 
be published in the EICS proceedings?). 

CONCLUSIONS 
The paper has shown that diverse disciplines contribute to 
the design of interactive computing systems. It has 
particularly discussed the role EICS can play in bridging SE 
and HCI (and related fields). EICS will be successful if it 
becomes irrelevant or a true sub-field of HCI and/or SE.  
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ABSTRACT 
In Human Computer Interaction, universal quality does 
not exist. Despite all the design efforts, there will 
always be users and situations the user interface (UI) 
will not be suitable for. This is particularly true for 
advanced UIs for which quality criteria are still ill-
defined. This paper addresses the engineering of UIs 
from the end-user’s point of view: it does not address 
the internal quality such as the software architecture. It 
reviews ways for integrating quality all over the 
development process and from different points of 
view: 1) the quality intended by designers thanks to 
flexibility and creativity in the design process as well 
as verification; 2) the quality perceived by end-users 
thanks to UI adaptation and self-explanation. 
  
Keywords 
Quality, Development process, Design time, Run time. 

PROBLEM: THE MULTI FACES OF QUALITY 
End-users often find problems while interacting with 
advanced user interfaces (UIs). Questions about where 
is an option on the mobile phone version of an 
application, what is the gesture to accomplish a task, or 
why did something happen in the UI naturally arise due 
to the imperfect quality of the UI.  
This problem of insufficient quality can be due to the 
increasing difficulty of designing advanced UIs by 
adding parameters like the devices, the location, the 
user characteristics... As mentioned by [12], the 
difficulty to design systems has been moved up. Even if 
the designer intends to achieve a good quality level 
(intended quality), he/she cannot foresee all these 
problems and obstacles at design time because each 
single user has his/her own understanding of the UI and 
might be in specific situations. It becomes impossible 
to provide support for all the users at design time for all 
the situations they might be in. 
But quality problems also exist because as the user is 
not the designer, the user has a different understanding 
of the UI. He/she can encounter different problems or 
obstacles during the interaction process, which can 
make him/her perceive a bad quality level.  
 
 

 
These problems are graphically represented by a gulf 
(figure 1) between the intended versus perceived 
quality.  

 
Fig. 1- Gulf of quality between intended and perceived 
quality. 
Moreover perceived and intended quality is not static 
and can evolve with people, the context of use and the 
system itself. So the research question is: 
What can be an engineering approach to continuously 
improve quality of advanced UIs? 

MODELS: A UNIFYING APPROACH  
As it is often the case in an engineering approach, we 
propose to use models as the basis for engineering 
quality. Models can serve as unifying approach that 
bridge the gap between the designer’s and the end 
user’s point of view: 

• Models are created by developers along the 
development process. They aim at achieving 
the intended quality. 

• Models created by developers can be reused to 
increase the quality perceived by end-users. 
They are “hyphens” between the intended and 
perceived qualities. 

RESEARCH AXES: INTENDED AND PERCEIVED 
QUALITY 
Considering the gulf of quality, we propose to structure 
the research axes thanks to designers’ and end users’ 
points of view. We need to study the intended and 
perceived quality. 

Intended quality 
Intended quality reflects the quality that the designer 
would like to achieve. It is mainly related to design 
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time where design, but also quality verification 
activities usually take place.  

Quality by design: model-based approaches have been 
investigated for long for generating UIs from models. 
However, the resulting quality was rather limited: the 
UIs were simply made of basic widgets (e.g., input 
fields, radio buttons), far from supporting the advanced 
features promoted in ambient intelligence. Recently, 
creativity has been explored by models [10]: the point 
is no more to generate UIs for end-users, but UIs for 
developers as means for supporting the divergence and 
convergence processes in creativity [9]. The UIs are 
generated from a task model using different models 
transformations. The developer selects the UIs or parts 
of the UIs he/she really appreciates. Then genetic 
mutations are processed to make the models 
transformations evolve and thus give rise to new UIs. 
Figure 2 presents examples of UIs automatically 
produced for a Chat application. The UI variations 
(structure, widget, layout, colour, etc.) are intended to 
inspire the developer. 

 

Fig. 2 – Examples of UIs generated by Magellan, a 
genetic algorithm-based environment for fostering 
developers’ creativity 

 
Another possible approach to improve the intended 
quality is to bring flexibility for developers so that to 
comply with the different practices in UIs development. 
Flexibility has been identified in the literature as one of 
the main research goals of method engineering [1]. For 
instance, [16] introduces flexibility in the design 
process for adaptive UI in order to decrease the 
threshold of use of models. We define three forms of 
flexibility:  

1. Variability as the possibility of choosing one 
path in a set of equivalent variants. For 
example, instead of creating concrete user 
interfaces, they are generated from existing 
UIs, saving considerable part of the effort to 

be made for learning the CUI model and 
(re)modeling the UIs.  

2. Granularability as the ability of a process 
model to support elements with different 
granularities, e.g. with different languages 
and/or quantities of details. We propose 
various levels of details when configuring and 
executing our tool for generating the domain 
model from a database. Expert designers just 
execute the tool whilst step by step 
explanations are provided for novice 
developers.  

3. Completeness as the possibility of fulfilling or 
not the proposed process; some activities 
and/or artefacts are then optional or can be 
replaced by a predefined result or product. For 
instance, the activity "define the platforms 
model" can be avoided; in this case, the 
platform model can be replaced by “default” 
models that the developer picks up in a 
repository proposed by the process model.  

Obviously, the UIs produced by such a flexible 
development process cannot be "perfect". However 
thanks to the process flexibility, designers and 
developers can reuse parts of their know-how and 
competencies, and are able to transfer some existing 
components into the paradigm of models: this makes it 
possible for them to create a first, albeit imperfect, 
version of their UIs, that they can iteratively improve, 
acquiring the needed competencies step by step.  
But the solutions proposed are always limited; in 
particular they do not consider the enactment of the 
process, which is primordial when considering the need 
of rapid evolution when designing advanced UIs.  

Quality by verification: Design should consider the 
verification of the intended quality. High quality of 
user interfaces, which can be ensured by several ways. 
For example, [13] proposes four ways of evaluation: 
formally by some analysis techniques, automatically by 
a computerized procedure, empirically by experiments 
with users and heuristically by simply looking at the UI 
and passing judgement according to one’s own opinion. 
The automation of quality verification has been largely 
studied in the UI literature, however the usual 
techniques for UIs verification such as model checking 
[3] or testing [4] must be adapted to advanced UIs. 
Perceived quality 
Perceived quality corresponds to the end users’ point of 
view under the system quality. So it is related to the 
runtime understanding of the system. At runtime, we 
consider that quality can be improved by composing 
existing UIs, by adapting UIs to their context of use or 
by explaining UIs. 

Quality by reuse: Software composition is said to be 
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one of the grand challenges for the coming years. In the 
engineering of human computer interaction, this means 
being capable of composing UIs from existing pieces of 
software. It has been addressed for different software 
development paradigms including models [11]. The 
problem is to succeed in composing without impairing 
the UI quality. As a matter of fact, composition can 
introduce some inconsistencies or discontinuities in the 
final UI. 
Quality by adaptation: Plasticity refers to the capacity 
of UIs to withstand the variations of the context of use 
(user, platform, environment) while preserving user-
centered properties [5]. User-centered properties clearly 
refer to the perceived quality. So to improve this 
perception, UIs can be technically adapted in two main 
manners: adaptation is either a remolding (e.g., 
replacing an image with a text) or a UI redistribution 
among the set of available platforms (e.g., migrating 
the inputs to a mobile device). Model driven adaptation 

has been intensively studied given rise to a reference 
framework [6]. To consider quality in this framework, 
usability is introduced: usability criteria complement 
transformations between models so as to choose an 
adaptation among others [14]. 
To implement this approach, [15] proposes UsiComp, 
an integrated and open framework which implements 
the principles of Cameleon by allowing designers to 
create models and to modify them at design time and at 
runtime. For instance, Figure 3 shows the two different 
UIs that are produced by UsiComp for two platforms, a 
PC and a mobile phone. In the background, we can see 
the UI adapted to the screen of the PC platform. 
Among others, the original screen from the PC 
platform has been split into two tabs due to the small 
resolution of the mobile phone screen. The zoom 
controller of the map widget has been removed as well. 
With such adaptations, UIs are adapted to devices thus 
providing usable UIs. 

 

Figure	  3.	  Generated	  UIs	  from	  the	  same	  task	  model.	  The	  UI	  in	  the	  background	  has	  been	  generated	  for	  a	  PC	  screen	  with	  higher	  resolution	  than	  the	  UI	  
for	  the	  mobile	  phone	  in	  front	  of	  the	  figure. 

However it still remains a challenge to guarantee that 
an adaptation has not impaired the perceived quality. 
Moreover adaptation generally does not take into 
account post-WIMP UIs.  

Quality by repair: As universal quality is utopian, 
end-users are those who are the best to improve their 
UIs as soon as they grasp the purpose and design 
rationale of each UI element. So an interesting 
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approach is to support end-users reprogramming thanks 
to models [7]. This approach is not restricted to repair, 
it can also be used for design. In this case, it introduces 
new problems in quality by design as end-users become 
designers.  
A complementary approach can propose to provide 
help about the UIs thanks to models: models created at 
design time can be used at runtime to explain UIs. In 
particular, these self explanatory UIs can provide the 
end-users with the design rationale of the UI [8].  
For instance, [8] presents a system that consists of 
using the design models to compute questions and 
answers at runtime to provide an help system (Figure 
4). The design models are still those proposed by the 
Cameleon reference framework.  

 

 
Figure 4. Reducing the gap between intended quality 
and perceived quality by model-based explanations. 
The self-explanatory facilities generated with our 
approach are responsible for:  

• Generating the set of questions. We consider 
those questions that the help system “knows” 
how to answer by inspecting the underlying 
models of the UI.  

• Generating answers. Once the user asks a 
question to the help system, the system needs 
to compute an understandable explanation or 
answer. This is done through the following 
three steps:  

o Selecting the Explanation Strategy. In 
this phase the help system selects the 
explanation strategy according to the 
type of the question. For instance, a 
question about “how” to realize a 
task (e.g. how to choose packs when 
selecting a car) is associated to a 
strategy related to the task model.  

o Inspecting the models. Each 
explanation strategy inspects one or 
more models to retrieve the elements 
that have been defined for each 
strategy.  For instance, to answer a 
“how” question, the strategy starts by 

inspecting the task model. The task 
related to the question is identified in 
the task model. Then the elements of 
the abstract UI mapped to the tasks 
are identified. Finally the elements of 
the concrete UI corresponding to the 
elements of the abstract UI are 
selected. Thanks to this chain of 
mapping, it is possible to obtain the 
final elements in the UI that can 
provide help. For instance, for the 
question “how to choose packs”, the 
mapping between models allows the 
system to retrieve the « Packs » 
button  in the UI. 

o Composing the answer. Once all the 
elements of the models have been 
retrieved, the answer is composed 
and prepared to be presented.  

• Presenting the answer. The computed answer 
is provided to the user in an understandable 
way. For example, the system will propose to 
users to “Use the Packs button” if they want to 
choose a pack. 

We conducted an experiment to evaluate the added 
value of model-based self-explanations. It shows that 
most of the users identify the help system as useful, in 
particular the How and the Where questions. However 
the study has also collected some interesting 
suggestions. First, we identified other types of 
questions (what is…, what if…) not explicitly 
supported by our system. Secondly usability of the help 
system, that was not our main concern, needs to be 
improved to facilitate interaction to select questions 
and to guide users thanks to the answer. 
However they are limited to graphical UIs and there is 
a clear need to increase models so as to provide 
explanations about advanced UIs. 

CONCLUSION 

The multi-faces quality of advanced UIs requires 
continuous amelioration. This challenge motivates 
needs for co-evolution between actors and systems: 
roles are unified between end users and developers; the 
gap between design, run and evaluation times are 
erased so as to improve quality at any time.  
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ABSTRACT
For various tasks in human-computer interaction, measures
of performance and emotion can be improved by adapting the
user interface to a user’s individual cognitive profile. Such
tasks can be found, for example, with eLearning, information
visualization, gaming, and human-computer collaboration in
reasoning or problem solving (e.g. in design). Relevant fac-
tors within a cognitive user profile may include separate cog-
nitive abilities, styles, and preferences, as well as personal
characteristics of memory or attention. The three chief chal-
lenges for a successful adaptation to a user’s cognitive profile
lie (1) in establishing which of these factors are relevant for a
given task-user pair, and to which extent, (2) in establishing
how, based on (1), adaption may best be performed, and (3)
in establishing a user’s individual values for these factors. All
three challenges possess aspects related to cognitive theory
and user modeling, as well as quite practical aspects related
to measuring a cognitive profile. This contribution will start
out by, in turn, addressing research questions and methods re-
lated to the challenges. A tiered structure for cognitive user
models will be subsequently sketched, through which adap-
tation can be based on parameters that are individualized to
varying degrees, depending on how much is known about a
user’s individual cognitive profile.

Author Keywords
Interaction Technologies; Adaptation; Cognitive Factors.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Some people are better than other people when it comes to
processing information given to them as pictures. Some peo-
ple outperform others when working with texts. The hypoth-
esis that there exist inter-individual differences in how people
process information on visual and verbal dimensions has been
the focus of research for decades. For learning, for example,
this has led to rather well established theories on different
cognitive abilities (i.e. relating to differences in what people
are capable of doing), different cognitive styles (i.e. relating
to differences of modality in how they process and represent
information), and different learning preferences (i.e. relating
to differences in how they prefer information to be presented
to them; cf. [21]). While eLearning studies into employing a

learner’s individual visual/verbal learning style for adapting
learning material have so far shown mixed effects of adapta-
tion on performance, they have shown clear benefits on in-
trinsic learner motivation [7, 2]. Would it not thus be useful
if an eLearning system knew about a user’s individual cog-
nitive abilities and styles, and if it used such knowledge to
automatically adapt how learning material gets presented?

A second example: A study by Keehner [17, 18] on effects
of conflicting visual/haptic cues on surgeons’ spatial scene
understanding during laparoscopic surgery demonstrated that
such effects depend on the surgeons’ individual spatial abil-
ities. One may conclude that, for surgeons with low gen-
eral spatial abilities, specific types of visual/haptic cue mis-
matches should be avoided, as these lead to a decreased
surgery-related scene understanding. Would it not be useful
if the laparoscopic system knew about a surgeon’s individ-
ual low spatial abilities and used such knowledge to prevent
certain cue mismatches from being presented?

A third example: For human reasoning with spatio-temporal
information (e.g., about distances/directions between objects
or places) the construction process of corresponding men-
tal scene models has been found to be frequently subject to
preferences (e.g. [19, 15]) in that, among all possible consis-
tent models, some are constructed more frequently (as well as
faster and easier) than others. Parsimony seems to play a role,
as models that reflect simple and typical configurations seem
to be preferred [12], which can be explained by simple and
commonly used mental processes [8]. Also, cultural left/right
biases may have an effect on preferences [15]. Let us assume
that we have a task that involves some spatial configuration
and that is either shared by a human and a computational sys-
tem, or in which a human user is assisted by a computational
system. Would it not be useful if the system knew about such
general human cognitive preferences, and adapted its actions
accordingly (e.g., by occasionally drawing the user’s atten-
tion also to some non-preferred model)?

It seems feasible to ground some of the adaptive behavior re-
quired for effectively addressing these examples onto general
and general-purpose models of cognition, such as ACT-R [1],
and to also, at least partially, evaluate adaptive behavior based
on these. The third example is likely to be amenable to such
an approach. For more specific cognitive faculties, use of
more specific models of cognition may be required (e.g., for
visuo-spatial reasoning, [8]), or of models which address spe-
cific classes of interactive tasks or domains (e.g., in-vehicle
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user interfaces [25], web-based navigation [11], or the design
of built environments [6]). For purposes of either usability
engineering or testing of adaptive user interfaces, a few ap-
proaches exist that incorporate user models along with inter-
action models, with the user models targeting general or spe-
cific user groups (for the latter, e.g. [24]). Programmable user
models [28] are a good example of approaches which specifi-
cally try to bridge gaps of knowledge, methods, and philoso-
phy of approach between the cognitive scientist and the inter-
face designer, as they permit predictive interface evaluations
based on implemented psychological theories. Even if an in-
dividual user’s previous domain knowledge and the history or
context of use can often be modeled, when it comes to inter-
individual differences in cognitive processing, such as may
be expressed by cognitive abilities or styles, such models ad-
dress the average user of the targeted group. The models are
specific with respect to task, context, expertise, or group, but
are still general with respect to that group’s cognitive profile.

It should seem obvious that adaptive user interfaces which
will adequately address the first and the second example will
need to draw on more individual parameters than can be de-
rived from general models of cognition, even from task- or
group-specific ones. For the individual user, these param-
eters may be assessed through various test instruments (for
example, through tests of mental rotation or mental perspec-
tive taking performance for the respectively related, specific
cognitive spatial abilities). While definitions of the terms cog-
nitive abilities, styles, and preferences vary in the literature, I
will, for the current purpose, simply rely on the definitions by
Mayer and Massa [21] that were already provided in the first
paragraph above. As far as other terminology is concerned, I
will follow [23] and hold an adaptive system to be one that
automatically modifies some of its characteristics to better fit
a user’s needs. To keep the discussion short enough for these
few pages, the reader may simply envision such adaptive be-
havior to occur either on macro or micro levels (cf. the dis-
cussion by [20]) and either at design- or run-time.

Next, three chief challenges for user interface design con-
nected to such an individualized approach will be outlined.
The third section will sketch how a practical design compro-
mise may look like that mediates between the desire (or even,
need?) to know as much about a user’s cognitive profile as
possible and severe limitations in obtaining such knowledge.
The contribution will conclude with a short discussion.

THREE MAIN CHALLENGES
As it turns out, the first two examples above are still both of
a rather benevolent type for the interface designer interested
in how cognitive factors (i.e., abilities, style or preferences)
vary among his user base. This is because the cited stud-
ies all investigated relationships between certain tasks (learn-
ing, scene understanding) and specifically selected cognitive
abilities or styles (visual/verbal, spatial). When starting with
a given task and an individual user only, however, the first
question is which of the currently known, separate cognitive
factors may play a role in determining how that one user cog-
nitively tackles the task. This question is already much harder
to answer. It becomes harder yet when asking for specific

effect sizes and directions, let alone when asking for pos-
sible interactions between the factors. Hunt [14] compared
seven different cognitive skills; all of these may easily differ
between users and may influence user performance. These
were reading comprehension, vocabulary, grammar, mechan-
ical reasoning, quantitative skills, mathematics achievement,
and spatial reasoning. Some of these skills are more intercor-
related than others, with reading comprehension and spatial
reasoning forming the maximally unrelated pair. While this
list of skills serves to give a flavor of the variety one has to be
able to deal with, it is by no means exhaustive.

The first main, hard challenge is thus to establish which
factors are actually important for adaptive user interfaces for
each given class of tasks, and which are not. Given that
HCI specialists are usually no specialists in the cognitive sci-
ences, and vice-versa, this challenge is best addressed inter-
disciplinarily. It must certainly be largely addressed incre-
mentally. It seems that it will not be enough to simply iden-
tify relationships between cognitive factors on the one hand
and measures of task performance or satisfaction on the other,
but that one has to equally demonstrate that specific adapta-
tion strategies formed on top of discovered inter-individual
differences in users’ cognitive profiles will be effective. Very
likely, not all differences in profiles will be equally open to
on operationalization for adaptive user interfaces.

A related, hard problem is created by the fact that many
distributions of cognitive ability or style expressions are far
from being uniform. Usually, some style expressions will
be more frequently encountered than others within a targeted
user group. For example, with cognitive learning styles, a ma-
jority of learners will be visual (74%), especially when sam-
pling from populations in the natural sciences or engineering
(e.g., [9, 2]). This may be of quite some importance for sce-
narios in eLearning or eTutoring. When a user interacts with
an adaptive system, asking how often his cognitive profile is
to be encountered within a user population will likely seem to
be irrelevant to him. What likely will be relevant to him is that
any adaptation which is to occur based on information about
cognitive profiles will occur based on his specific profile. For
systematically investigating interrelationships between cog-
nitive factors and tasks, as well as for investigating how an
adaptation should best occur based on a given user profile,
frequencies of specific types of user profile are, however, far
from being irrelevant. When a user type is encountered too in-
frequently, achieving reliable statistical comparisons between
types may be difficult. As it seems to be no viable option to
exclude those users with rare profile types from using an in-
terface, or to at least decide to not try to provide them with
adaptive interface behavior, other approaches need to found.
A possible approach seems to lie in using mixed-method de-
signs that combine conclusions based on quantitative obser-
vations for the frequent types with conclusion based on qual-
itative observations for the more infrequent types.

Should one be in the lucky position to have already deter-
mined which cognitive factors effectively influence a given
user’s performance on a specific task, and in which ways, the
second main challenge lies in determining how adaptation
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of the interface should best be performed. In the case of the
eLearning example above, this may be comparably straight-
forward, as one may choose the representational format of
learning material to correspond to a user’s individual cogni-
tive profile. However, even with the example, it seems unclear
if this would always be the best strategy. Depending on the
specific learning goals and the context, it may be more im-
portant to train learners to instead better cope with material
in formats that do not well match their cognitive profiles (see
e.g. [9] for a discussion of this point for inter-individual dif-
ferences of students’ learning styles). The question thus be-
comes one of either adapting to a profile, or against it. This
is particularly interesting in gaming applications, when sys-
tem adaptation can take the form of a computational player
either adapting to keep a human player in the game for as
long as possible (and to, e.g., maximize fun or engagement)
or to adapt to become a maximally strong adversary (see e.g.
[27] for an example and a discussion).

Choices of either adapting to or against a user’s individual
cognitive profile may be limited for purely practical reasons
for all sorts of asymmetric tasks which are not fully speci-
fied. Such tasks can be frequently encountered, for exam-
ple, in computer-assisted design: here, usually only a subset
of design requirements can be formally described (often, the
more technical requirements, such as e.g. with regard to ther-
mal insulation), while other requirements remain the exclu-
sive province of a human designer (often, those regarding an
aesthetical or a more holistic evaluation of the design). The
result is a setting of an asymmetric human-computer collab-
oration, with shared initiative, in which both parties need to
rather act as partners that observe, adapt to, and, ideally, an-
ticipate the other’s actions in order to be jointly effective [3].

Finally, the third chief challenge lies in making sure that
a user interface has enough information about an individual
user available to allow for an adequately precise establish-
ing of that user’s relevant cognitive profile. From a practical
point of view, this likely poses the hardest of the three chal-
lenges. While test instruments exist for many of the various
cognitive abilities and styles, administering them is often a
rather lengthy process that, what is even worse, is often tir-
ing and/or boring for the tested user. The same holds true
for many of the established instruments that assess individual
characteristics of a user’s memory and attention systems. The
best ways of measuring a user’s working memory capacity are
performance measures, that is, one tests how much one can
cram into the memory system. However, running at full load
will not only quickly tire a user out for further tests of cogni-
tive ability or style, but also for any main tests of potentially
adaptive systems that the HCI professional will be chiefly in-
terested in. It thus seems highly impracticable to measure
factors related a user’s cognitive profile separately and over
and over again for each task, interface, or tool. There will be
neither enough time, cognitive user (or researcher) resources,
or user motivation for such an endeavor.

In addition, individual expressions of abilities or style will
be only largely indicative of a user’s general traits in cog-
nitive processing, though not necessarily for life and in all

situations. Measurements and the factors that they reflect are
each expected to vary to different degrees depending on the
task or context (e.g. for learning styles, see [2]). Depend-
ing on the task at hand, it may be necessary to dynamically
assess additional information about the individual user, for
instance, to infer information about his current mental state
(e.g., regarding current foci of attention). Different measure-
ments of psychophysical parameters may be used to further
inform, individualize, and situate more general cognitive user
models, such as through parameters derived from gaze (e.g.
[10], [4]), EEG, or skin conductance, etc. Where some of
the criticism above was directed against cognitive user mod-
els that were too general (i.e., not individualized enough), the
problem here is that information obtained about a user’s in-
dividual cognitive profile via the established test instruments
may be too general (i.e., not situation- or context-dependent
enough) to serve as the sole base from which to derive param-
eters governing adaptive interface behavior. For example, for
tasks or games that involve problem solving, one can assume
reliable information about a user’s current strategies and foci
to likely be at least as important for a generation of effective
adaptation strategies as reliable information about the user’s
individual cognitive profile, especially when such profile in-
formation has been obtained independent of task or context.

TIERED ADAPTATION
I have suggested above that a viable course of action to deal
with different frequencies of cognitive user profiles in a user
population may lie in combining largely qualitative measures
applied to the infrequent types with largely quantitative mea-
sures used for the more frequent types. This may imply that
different information obtained about a user’s individual pro-
file may be reliable to different degrees, depending on the
methods through which it was acquired. It may also mean
that adaptive interface behavior may have to be more or less
assertive: less, if it is based on less reliable bits of infor-
mation, more if it solidly grounds in reliable data. Such a
graduated approach fits well with a situation in which obtain-
ing any specific information about a given user-task pair (i.e.,
information about relevant cognitive factors which is either
individualized or situated, or, better, both) is nearly always
costly, with prices being chiefly paid in currencies of user
fatigue or motivation. We thus need an approach that facil-
itates the striking of a practical compromise between a user
interface designer’s wish to know as much about a user’s cog-
nitive profile as is possible and strong practical limitations in
obtaining such knowledge.

The model proposed here is based on a related sketch for sit-
uations of joint human-computer spatial reasoning and prob-
lem solving suggested by [5]. It conceptually extends [5] and
is not limited to applications of spatial reasoning or problem
solving. The model (see Fig. 1 for an illustration) consists
of three tiers of user-related data, in which information avail-
able about the cognitive profile of an individual user is grad-
ually refined from bottom to top level. The model is tiered,
as whenever more specific information is lacking, it may be
substituted by less specific information, albeit at a price, as
we will see. General cognitive factors are such as may be ob-
tained, for instance, through general models of human cog-
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Figure 1: Sketch of the model with general, individual, and
situational cognitive factors. Ideally, knowledge would exist
up to the top tier for all factors relevant to adaption of a user
interface behavior for a specific task. Where such is not avail-
able, less specific values may substituted from lower tiers.

nition, e.g. regarding general (i.e. averaged) characteristics
of memory or attention, temporal characteristics of cognitive
processing, or general preferences of mental model construc-
tion such as those described for the third example above. In-
dividual cognitive factors of our modeled user are of the kind
that can be obtained through test instruments, such as for var-
ious relevant cognitive abilities or styles. The first and the
second of the examples discussed in the introduction would
likely benefit from an adaptation rooted in general and in-
dividual cognitive factors. Situational cognitive factors, as
shown on the top level, are such factors as can be derived
based on live measurements of (e.g., various psychophysical)
parameters about our user. With such measurements, one may
attempt to address questions of the following kind: Which
controls has the user gazed at over the course of the last five
seconds? Is the user’s current attention span likely to be lower
or higher than his usual individual level? Are there any indi-
cations that his usual expressions of learning styles should be
modified for the current task? etc. Situations related to the
first two examples are easily conceivable during which the
effectiveness of adaptive user interfaces may be improved by
utilizing a selection of situational cognitive factors in addition
to individual and general ones.

Through establishing the three levels, we get a number of
interesting properties. First, information about factors on
higher levels comes generally at higher costs than information
about factors on lowers levels. Information obtained higher
up is also more likely to be specific to a situation or task,
and will be less well suited for drawing general conclusions
about the cognitive profile of our user, or even about a group
of users. General cognitive factors exist on all three levels,
as only some of the more general assumptions and findings
about a user’s cognitive profile can and need be gradually re-
fined along the way up. The same holds true for individual
cognitive factors on levels two and three, and their relation-
ship with situational cognitive factors. Last, and perhaps most
importantly, we may use this model to sketch relationships
between groups of factors which become useful when we do
not have complete information about a user’s individual cog-
nitive profile (that is, virtually always). Ideally, our knowl-

edge would extend up to the top tier for all of those factors
that we judge to be relevant to effective adaption of a user
interface for a specific task under consideration. Whenever
such knowledge is incomplete, we may revert to using knowl-
edge about factors on lower tiers, thus effectively using our
model as one of graduated defaults. Such reversion to lower
tiers will come at a price, of course, as we will lose some
of our individualized or situated potential. In other words,
whenever we move from higher to lower tiers, more specific
values about cognitive factors and factor expressions will be
substituted by less specific ones. It seems likely that one may
often rather easily devise mechanisms of adaptive behavior
that can reflect such changes in specificity, for example, by
adapting a user interface less strongly (e.g., in less assertive
and more subtle ways) whenever information about the in-
dividual user’s cognitive properties is drawn from factors on
less reliable tiers.

CONCLUSIONS
I have discussed three chief challenges that need be addressed
to be able to productively harvest inter-individual differences
in cognitive user profiles for generating effective, adaptive be-
havior of user interfaces. It seems that at least challenges (1)
and (3) can only be adequately tackled inter-disciplinarily and
through collaboration of user interface designers and cogni-
tive scientists. In addition to incremental solutions for those
two challenges, such collaboration should, at best, also result
in a process of establishing a base of rules or best practices
of which cognitive factors frequently relate to an individual
user’s task performance, and how, and of which test instru-
ments are best to be used under which circumstances. The
reason why I raise this point is that, naturally, we will very
likely not see many user interface designers suddenly start-
ing a training in the cognitive sciences. This would neither
seem practicable, nor necessary. What is needed, however, is,
first, an increased awareness among user interface designers
for inter-individual differences rooted in their users’ cogni-
tion and, second, approaches to designing adaptive user in-
terfaces that permit scaling. This is to say that the approach
needs to be able to scale from simple, recipe-like stages (à la
”The ten most important rules for adapting your iOS app to
your users’ diversity in attentional resources”, perhaps simi-
larly simple and iconic as e.g. Shneiderman’s Golden Rules
[26] or Norman’s Design Principles [22]) to much more de-
tailed and focused stages in which specific cognitive factors
will need to be addressed based on specific theories or (live)
models of user’s cognitive processes.

One should of course ask whether the three challenges that
were raised here are the only challenges out there that cur-
rently keep us from creating effective adaptation of various
user interfaces to the individual user’s cognitive profile. The
answer is no, of course. For the purposes of this contribution,
I have tried to select and concentrate on the three challenges
which I currently rate as the most urgent and difficult ones.
Other, related challenges do, for instance, target questions of
how changes of users’ cognitive profiles over the course of a
day, a task, or a lifetime, can be tracked, modeled, and reacted
to, or of how users’ cognitive abilities and styles interact with
their emotional states. These are interesting questions, to be
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sure; however, I would strongly recommend embarking on a
stepwise process, in which we tackle the most important chal-
lenges first, before moving on.

As a last point, I would like to argue that we are currently
seeing a significant increase in the frequency of HCI settings
that would benefit from a better adaptation of the involved in-
terfaces and systems to the individual user’s cognitive prop-
erties. Let me illustrate this point through two quick exam-
ples: First, eLearning. The use of MOOCs (Massive Open
Online Courses) is currently on a rapid upswing, no matter
if counted by the number of courses being offered or by at-
tendance (surpassing 230,000 individuals per course for some
courses, [16]). Also, participants are drawn from increasingly
heterogeneous groups [13]. One possibly effective response
to diminishing available instructor resources per participant
may lie in constructing eLearing systems that more closely
shadow the individual user’s learning progress than is cur-
rently the common case, and that better adapt to it, similarly
to how a good tutor would adapt material and methods to
a student’s progress. Such response would certainly bene-
fit in quality if designers of those eLearning systems would
know more about users’ individual cognitive profiles as well
as know better how to adapt interface behavior to these.

The second example is based on an extrapolation about the
frequency of human-computer interactive systems that are
asymmetric in the sense sketched above. The more com-
putational tools we see that employ processes which remain
partly opaque to the standard user (often because of reasons of
data or process complexity, e.g. in applications of computer-
supported design or big data analysis, or that employ tech-
niques of data mining or machine learning), the more fre-
quently HCI researchers and practitioners will need to ad-
dress issues of human-computer collaboration and negotia-
tion in which adequate cognitive user models will be key for
effective interaction. My bet is that, at least for as long as we
will continue to see an increase in the use of data-intensive
applications, we will see an increase of asymmetric interac-
tion settings that can greatly benefit from effectively adapting
to users’ individual cognitive profiles.
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ABSTRACT 
This paper highlights wider engineering challenges 
encountered in the design and development of interfaces for 
‘Big  Data’   analysis   tools with a small number of users in 
specialist application domains. Based on six   years’  
collaboration with a UK-based health informatics company 
processing 16 million hospital admissions records a month, 
we report challenges associated with commercial pressures, 
rapid changes in the business environments, and variation 
in   users’ computer literacy, functional requirements, 
technical resources and knowledge of the complex 
underlying data. Whilst the literature advocates new 
interaction and analysis techniques for Big Data 
visualizations in these contexts, this paper cautions that 
some users cannot spend the time to learn how to interact 
with them or are constrained by their working environment. 
Despite these challenges, we show that User-Centred 
Design and research ‘in   the   wild’ can go some way to 
address these engineering challenges and support the 
implementation of Big Data business-to-business 
applications. 

Author Keywords 
Big data; health informatics; user-centred design 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
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BIG DATA, BIG BUSINESS 
The volume, velocity and variety of data being created and 
analysed is ever increasing [2]. IBM state that 90% of the 
world’s   data   was   created   in   the   last   two   years   and   2.5  
million gigabytes of data is created daily – enough to fill 
27,000 iPads per minute - a phenomenon   known   as   ‘Big  
Data’.   Data   has   been   compared   to   the   “oil”   of   the   21st  
century [4], but, unlike oil, it will not run out. As mobile 
access to computers and the internet increases, new and 
emerging technologies will fuel the growth of data.  

Big Data presents significant opportunities and is already 
transforming business sectors across the global economy: 
from increased transparency and accountability with open 
data, to new scientific discoveries, and market-changing 
products and services, which can be developed using 
modelling, data analytics and data-driven science. Its 
volume and variety, and the speed at which it is created and 
processed, however, can pose huge challenges. 

Designing systems to cope with large volumes of data is not 
a trivial design problem, especially when the users do not 
have the requisite skills to analyse and visualise such large 
datasets. A shortage of skilled workers in the data analytics 
market is cited as one of the key barriers to further data 
analytics activity [2]; these challenges have hindered the 
realisation of the opportunities presented by Big Data [10]. 
User-Centred Design (UCD) is important in facing these 
challenges because consumers, businesses and academia 
require usable analytical tools to profit from Big Data; 
UCD can help to reverse this through the design of tools 
that effectively support workers to analyse and present an 
increasingly large volume and variety of data. 

While much of the discussion surrounding Big Data 
applications considers large numbers of users, it is vital to 
understand the social context. In   the   ‘Social   Life   of  
Information’, Brown and Duguid remind us that, by 
engaging the social context in which technology is 
embedded, better designs and uses will emerge [1]. 
Technology is most successful where it augments the 
natural abilities of humans; for example, people identify 
others as individuals and interact with them in context in a 
way that computers are unable to replicate. 

This position paper will further this idea by discussing the 
wider engineering challenges for the design and 
development of interfaces for Big Data analysis tools with a 
small number of users in specialist application domains. 
The lead author reflects on a six-year collaboration with Dr 
Foster Intelligence (DFI), a public-private partnership in 
between   England’s National Health Service (NHS) 
Information Centre and Dr Foster Ltd, who were pioneers 
in the UK health informatics sector. They provide 
independent health and social care information to 
healthcare managers and clinicians to improve clinical 
effectiveness and efficiency. DFI has produced a range of 
web-based data analysis tools which give NHS managers 
access to the Hospital Episodes Statistics (HES) database 
that contains admitted patient care data from 1989 onwards 
and outpatient attendance data from 2003 onwards. Whilst 
live access to 825 million hospital records presents many 
challenges, with users varying in computer literacy, 
functional requirements, technical resources and knowledge 
of the complex underlying data, it offers opportunities that 
are  unavailable  in  any  other  country’s  health  system. 
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Figure 1 User-Generated Screen Capture 

Designing effective user interfaces for Big Data is a 
challenge that user-centred design and evaluation methods 
(UCM) from the field of Usability Engineering can 
overcome. The lead author collaborated with DFI to adapt 
UCM, which revealed the business realities of developing 
and marketing Big Data applications; they can be a high 
risk investment for small-medium enterprises. Competitive 
pressure to keep up with technological advances can tempt 
companies towards technology-led development processes. 

This experience provides a unique perspective on the 
engineering-related challenges associated with the design of 
interfaces for Big Data applications and the methodological 
support required in a specific application domain. This will 
be informative for other enterprises looking to exploit the 
growing business-to-business market for Big Data. 

INSIGHTS FROM INSIDE A BIG DATA BUBBLE 
The major challenge for DFI is to process 16 million 
records a month, add value to them and enable users to run 
meaningful analysis; learners and novices need support to 
achieve their tasks and goals in a timely manner. Many 
different user types perform different roles (for example, 
Information Analysts, Clinicians, Public Health Analysts, 
Medical Directors) and correspondingly different tasks. 
Users therefore have a wide disciplinary background and 
vary in computer literacy, often correlated with how long 
they have been working in the NHS. (For example, users 
who have had a long career in the NHS can be accustomed 
to particular working practices and averse to change.) 
Furthermore, users are spread across England in hospitals 
that operate in subtly different ways. These user 
characteristics are not unique to health informatics and can 
be seen in other emerging Big Data application domains. 
These include financial services, insurance industry, local 
government, social services, urban planning, large 
infrastructure projects, environmental management and 
climatology, in which the end-users synthesize Big Data to 
make  decisions  that  impact  upon  people’s  everyday  lives.  

Integrity of the data, transparency in the methodologies 
used and secure data processing are also important  to  DFI’s  
customers. Whilst users require design and evaluation 
support to make sense of it and complete their tasks, they 
are knowledgeable about the highly complex information 
that the application processes. A Hospital Standardised 
Mortality Ratio (HSMR), and the methodology for its 
calculation, comprised the basis for the formation of the 
original Dr Foster Ltd, which hospitals use to benchmark 
their death rate; the organization also adds various flags to 
each admission record, including readmission within 30 
days and patients’  demographic  and  lifestyle characteristics. 
DFI store the data in an area of the office that requires 
security access and is protected computationally because of 
its personal and sensitive nature; the system displays an 
error message if the user runs a query with few results, 
which would potentially allow patients to be identified. 

Finally there are more systemic, technological challenges. 
A screenshot study to inform personas development 
revealed that users integrate Big Data within their local 
working environment. The screenshot in Figure 1 shows 
Microsoft Word and Excel open simultaneously; this 
corroborated interview data that revealed many users rarely 
use anything other than Microsoft Office applications for 
their work. Users integrate the data and visualizations into 
Microsoft Word to create reports, Excel for analysis and 
PowerPoint to present at meetings. Such information must 
inform the design of the user interface and visualizations. 
They are familiar to certain icon and button conventions 
from these applications and find it difficult to adjust to 
others. The implications of this are that whilst the latest 
literature tends to endorse and advocate more current, novel 
and advanced visualizations [3,5,7], many users are not 
accustomed to the visualization techniques used and do not 
have the time to learn them. DFI’s  users are further limited 
by the technology available to them in a hospital. The 
technology infrastructure in NHS hospitals necessitates that 
tools developed by DFI are compatible with all web 
browsers; users rarely have a good network connection or 
the authority to download and use the latest browsers, or 
any additional software required to use some of the more 
advanced visual analytics tools. In subsequent interviews 
for the personas study, one user reported that they logged 
on in the evening with a glass of wine because their home 
network connection is better. 

USER-CENTRED DESIGN OF METHODS AND TOOLS 
A mixture of technical and organizational obstacles 
prevented the implementation of many recommendations 
that resulted from studies that the lead author carried out. 

Commercial pressures, and the rapidly changing business 
environments in which Big Data applications are 
developed, create challenges for their development; many 
UCM demand more resources than commercial pressures 
permit Big Data enterprises to use. Whilst the authors’  
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collaboration with DFI had a positive impact in promoting 
UCD within the organizational culture, the lead author was 
given limited contact with end users to carry out user 
testing for commercial reasons; the organization preferred 
that users did not see unfinished products so that they 
would not be discouraged to renew contracts and switch to 
the competition. User testing was eventually carried out in 
two phases late in the development process, when the 
organization was confident that the application was 
sufficiently functional and presentable; the resultant time 
pressure hampered recruitment of participants (six in phase 
one, nine in phase two) and implementation of their 
recommendations. The limited time available to 
participants, and their geographical spread, further delayed 
the scheduling of test sessions. Therefore enhanced 
‘Discount’ UCM were used and adapted to the context [6].  

Methods included user testing and an online questionnaire 
to explore the users’   level of understanding of maps. 
Personas were also developed with database server log file 
analysis, a user-generated screen capture study and 
interviews during which participants demonstrated a typical 
task, to provide the developers with a better understanding 
of the users’  goals,  behaviours,  attitudes, skills and working 
environment. The authors adapted the way they recruited 
participants, selected tasks, identified usability problems 
and reported results according to the business and project 
requirements [8]. This methodological approach offers 
unique insights into the challenges of developing usable Big 
Data applications and facilitates the co-design of new 
approaches to develop suitable interaction techniques. 

Many widely-used UCM were not designed for complex 
systems such as Big Data applications and are therefore not 
necessarily appropriate. For the first phase of the 
collaboration the lead author managed the design and 
development of geographical analysis functionality for a 
tool for public health professionals. Geospatial tools have 
inherent difficulties for users that are not necessarily 
revealed using discounted UCM [9]. For users to exploit 
these datasets to their full potential therefore requires new 
approaches to their design and evaluation. 

In addition, organizational and physical aspects of the work 
environment played an important role. For example, a glass 
wall (Figure 2) was required because of the data’s 
sensitivity; only a few developers were permitted access to 
it. Developers likened working behind the wall to working 
inside   a   “fishbowl”;;   it   created   a   ‘silo’ effect and impeded 
communication between developers and their colleagues, 
including designers and customer-facing teams. 

CONCLUSION 
This position paper demonstrates the need for design and 
interaction techniques for small-medium data-focused 
enterprises that develop specialist Big Data applications for 
a limited number of users who vary in computer literacy, 
functional requirements, technical resources and knowledge 
of the complex underlying data. A finite market of 
customers and high commercial stakes demands the 
development and adoption of ostensibly trivial and facile 
interaction techniques and UCD methods, which can be 
overlooked in the pursuit of more advanced, viscerally 
impressive, solutions. It also demonstrates a major 
engineering challenge facing the designers and developers 
of Big Data applications: many users do not have the time 
or technology to be able to learn and use more advanced 
visualizations. Although research   ‘in   the   wild’ has 
elucidated difficulties of embedding UCD in such 
organizations, it can also support them to adopt UCD to 
their benefit and tackle the engineering challenges they face 
in the growing Big Data business-to-business environment. 
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ABSTRACT 

In recent years, Virtual Environments have appeared in new 

areas such as mass-market, web or mobile situations. In 

parallel, advanced forms of interactions are emerging such 

as tactile, mixed, tangible or spatial user interfaces, 

promoting ease of learning and use. To contribute to the 

democratization of 3D Virtual Environments (3DVE) and 

their use by persons who are not experts in 3D and 

occasional users, simultaneously considering Computer 

Graphics and Human Computer Interaction design 

considerations is required. In this position paper, we first 

provide an overview of a new analytical framework for the 

design of advanced interaction techniques for 3D Virtual 

Environment. It consists in identifying links that support the 

interaction and connect user’s tasks to be performed in a 

3DVE with the targeted scene graph. We relate our work to 

existing modeling approaches and discuss about our 

expectations with regards to the engineering of advanced 

interaction technique. 
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INTRODUCTION 

With the evolution of technologies, computing capabilities 

and rendering techniques, the use of 3D Virtual 

Environments (3DVE) is becoming popular. 3DVE are no 

longer restricted to industrial uses and they are now 

available to the mass-market in various situations: for 

leisure in video games, to explore a city in Google Earth or 

in public displays [26], to design house furniture [17] or to 

explore cultural heritage sites in a museum [6]. However, in 

these mass market contexts, the user’s attention must be 

focused on the content of the message and not distracted by 

any difficulties caused by the use of a complex or 

inappropriate interaction technique. This is especially true 

in a museum where the maximization of the knowledge 

transfer is the primary goal of an interactive 3D experience. 

Common devices, such as keyboard and mouse [21] or 

joystick [30] are therefore widely used in museums. To 

increase the immersion of the user, solutions combining 

multiple screens or cave-like devices [6] also exist. 

However, these solutions are cumbersome and expensive. 

Meanwhile, the Human-Computer Interaction (HCI) 

research domain is rapidly evolving and growing in 

complexity with new advanced forms of interaction such as 

mobile [16], ambient computing [13], spatial interfaces [15] 

and tangible user interface [29]. A common feature to these 

advanced forms of interaction is the attempt to involve and 

combine the use of multiple objects and entities taken in the 

physical and digital environments: interactive solutions are 

smoothly integrated in the user’s activity and have been 

proved to be easier to apprehend by newcomers [24]. 

Successful uses of such advanced interaction have been 

recently demonstrated in mass-market applications 

involving 3DVE for museums [11][12].  

It thus appears that 3D interactive applications are more and 

more widespread, from professional context to public 

spaces and from expert users to very occasional users. In 

addition, advanced forms of interaction techniques offer 

new potentials such as being based on personal belongings 

(devices or artefacts), integrated in the physical 

environment, easy to apprehend. But developing 3D 

interactive applications on one hand and advanced 

interaction techniques on the other hand are two 

preoccupations that are mostly considered through 

separated approaches, leading to compartmentalized 

progresses. There is therefore a need for understanding and 

supporting the engineering of advanced interaction 

techniques for exploring and taking advantage of 3DVE.  

In this position paper, we first provide an overview on a 

new analytical framework for helping and guiding the 

design of advanced interaction techniques for 3DVE. We 

motivate and illustrate the choice of its grounding elements 

and then discuss a number of existing modeling approaches 

potentially useful to complement or refine this framework. 

We finally discuss our expectations from the workshop, 

with regard to the proposed framework and more widely 

with regards to the engineering of advanced interaction 

technique. 
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OVERVIEW OF A NEW ANALYTICAL FRAMEWORK 

We first present the two pillars of our modeling approach, 

tasks analysis and interactive scene graph. We then 

introduce the notion of links between these two pillars. 

Tasks tree 

The first pillar of the analytical framework is the result of a 

task analysis: a task tree. Task analysis (Figure 1 – left) 

consists in a decomposition of user’s goal into tasks and 

sub-tasks which must be achieved to reach the user’s goal. 

Task analysis is widely accepted in the HCI community as a 

starting point to the design of interactive techniques 

because it thus provides an algorithm of the user’s activity, 

the logic and the dynamic of tasks accomplishment. But a 

task analysis does not express how the task is concretely 

performed with the system: no information related to the 

interaction technique is provided. Task analysis is 

particularly useful to understand and structure the user’s 

activity, define functional specifications, identify data 

requirements, etc. [2]. 

Different formalisms exist to represent the result of a task 

analysis. We choose to rely on the familiar Hierarchical 

Task Analysis (HTA) formalism [2]. With HTA, the 

decomposition of the task is presented as a hierarchical tree 

of tasks and sub-tasks, enriched with some attributes 

(iteration, optional, parallel, etc.). Choosing a light 

approach ensures that non-experts are able to use it as a 

support for designing advanced multimodal interaction for 

3DVE. 

When used to describe tasks with an interactive 3DVE, 

most of the identified tasks are specific to the application 

domain and the leaves of the tasks tree are close to 

Bowman’s tasks [5] (navigation, selection, manipulation, 

system control). But none of the 3D elements impacted by 

the tasks can be specified. This is where the interactive 

scene graph comes to action. 

Interactive scene graph 

The second pillar of the analytical framework is the 

interactive scene graph which provides a structured 

description of the 3DVE to be used. This scene graph is 

therefore specific to each 3DVE. A 3DVE generally 

consists of 3D objects (meshes, widgets or basic 

geometrical elements such as cone, cube, cylinder, etc.), 

lights and virtual cameras. At a finer grain 3D objects are 

described as a set of vertices (geometry), faces and edges 

(topology). Manipulations of 3D objects (translations, 

rotations or scaling) must therefore take into consideration 

the underlying topology and geometry. To assist this 

process, the concept of scene graph [25] has been 

developed to organize the 3D elements and provide for 

developers a structure for the assembly of a 3D scene.  

Scene graph is a widely accepted method used in the 

Computer Graphic (CG) community to describe the 

essential components of a 3DVE. Scene graphs are also 

relevant to our context because we need to understand and 

take into account the structure of the 3D scene to design the 

interaction with it. But, we are not interested in elements 

related to the implementation of the scene graph by the 3D 

API in charge of the rendering. We are also not interested in 

the way the scene graph may impact the use of 3D engines 

for solving issues like texture management or collision. 

However, with the scene graph description, only geometric 

and topologic aspects are expressed. It is not clearly 

identified which parts of which components of the 3D scene 

are likely to be impacted by user’s interaction. To this end, 

we propose to define the “interactive scene graph” (Figure 

1 – right). Its aim is to highlight and characterize handled 

and not-handled objects, i.e. objects impacted or not by 

one of the user’s tasks identified during the tasks analysis.  

The definition of the “interactive scene graph” is based on 

the most relevant features used to support 3DVE user’s 

interaction in 3D engines like Unity 3D [32], Irrlicht [34]. It 

is also derived from the standard description language X3D 

[33]. X3D supports the description of animated 3D scenes: 

behaviors among 3D nodes are expressed in script nodes or 

simple links among 3D nodes. The role of the “interactive 

scene graph” goes beyond the description of animations in 

the 3DVE: it emphasizes which are the elements and 

attributes of the 3D scene with which external elements 

may interact. Based on these existing approaches, we 

distinguish two types of handled objects: components and 

renderers.  

Components are 3D objects composing the 3DVE (mesh, 

geometrical element, widgets). User's interaction may 

impact Components through the modification of two classes 

of attributes: state and manipulation. State attributes refer 

to the color, the texture or the visibility (display or not in 

the 3DVE) of the object. Manipulation attributes are more 

complex. Three levels of manipulation attributes coexist: 

User’s goal Task tree

Links  supporting the interaction 

Interactive scene graph 3DVE

3D / VR considerationsHuman / usage considerations

Figure 1: Overview of our analytical framework 
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the object, its faces and its points. First, one may modify 

position, orientation or scale of an object as a whole. 

Second, an object is made of a set of faces: depending on 

the object structure, modifying a face can be limited in 

terms of degrees of freedom in orientations and scales. 

Third and finest level, a face of an object is made of a set of 

points: at that level one can only acts on the 3D position of 

each point. Faces and points levels are thus useful to refine 

and characterize the deformation of a 3D object.  

Renderers are objects such as lights or camera, taking part 

in the rendering of the 3D scene. User's interaction may 

impact Renderers through the modification of two classes 

of attributes: state and manipulation. States include 

attribute such as enabled/disabled and color. Manipulation 

attributes correspond to position and orientation, with 

orientation depicting the definition of the point of view of 

the camera. 

The next step consists in identifying existing links between 

elements of the 3DVE and user's sub-tasks of the task tree 

that are affecting them. 

Linking user’s task with elements of the 3D scene 

It consists in identifying for a set of sub-tasks of the task 

tree, the attribute(s) of the interactive scene graph affected 

by the realization of each of these specific sub-tasks (Figure 

1 – middle). As a result pairs of user's sub-task and 

attributes of the 3DVE are clearly highlighted. This set of 

links provides a complete view on the user's interaction that 

will be performed in the 3DVE to perform the user's 

activities required to reach his/her goal. Each link depicts 

the use of one interaction modality [20]: on the one hand 

each link may involve a different interaction modality, on 

the other hand every links is using the same and unique 

interaction modality. In addition, we anticipate that the 

operators (sequence, alternative, etc.) present in the task 

tree at higher-levels will influence the design of the links.  

Highlighting the pairs of user's sub-task and attributes of 

the interactive scene graph therefore constitutes the 

description of the overall user's interaction with the 3DVE. 

Furthermore, it establishes a link between user’s activities 

(task analysis) and the 3DVE content and behavior (the 

interactive scene graph). Therefore, this description 

constitutes a support to reason about the design of the 

overall system and takes advantage of HCI and CG 

specificities. It overcomes the description of one specific 

task or one specific technique out of the context of use and 

manipulation of the 3DVE. In the next section, we illustrate 

the overview of our analytical framework with an example 

of the literature.  

ILLUSTRATIVE EXAMPLE 

Portico [4] is an interactive system for enabling tangible 

interaction on and around tablet computers. We focus our 

illustration on one of their application example named 

penalty shootout. Let us describe the interactive setting with 

the use of our analytical framework. The aim of the user is 

to shoot a goal (Figure 2 – A - task T0). For this, the user 

has to watch the goal and goalie (T1), place the ball (T2) 

and shoot the ball (T3). The system does not support 

multiple balls thereby there is a unique ball available for the 

user. Now, the interactive scene graph (Figure 2 – B) is 

composed by a non-handled camera (renderer), a handled 

soccer ball (component) and some non-handled objects 

like the goal, the goalie and the soccer field. Finally, the 

designer has adopted a tangible interaction to establish the 

link between the task tree and the scene graph (Figure 2 – 

C). Concretely, the soccer ball is a physical object 

manipulated by the user and thus, the sole task (L1) 

impacting the interactive scene graph is the task T3. The 

link L1 of this example connects the task T3 to the 

manipulation attribute position of the 3D ball in the scene 

graph. The task T2 does not impact the virtual ball position 

because the virtual ball position change only when the 

physical ball touch the tablet. 

From this description, we can identify that the interactive 

situation supports the manipulation task in a 3DVE through 

the link L1 and an implicit selection task through the 

manipulation of the physical ball. The remaining Bowman’s 

3D tasks (navigation, system control) are not supported by 

this interactive technique. The description of the link L1 

also highlights a direct connection between a physical 

object and a virtual 3D element (the ball): physical behavior 

and representation are directly mapped to the behavior of 

the corresponding digital object. Although it is a rather 

simple example, it shows that the framework can help in 

visualizing when the user’s focus has to be on the 3D scene 

with regards to the user’s task realization. If several links 

are present it may also help identify inappropriate sequence 

of interaction, such as switching modalities while focusing 

on the same 3D parts.    

To better structure this kind of reasoning, designing the link 

L1 is subject to a set of design aspects that we extracted 

from the literature and summarize in the following section. 

Shoot a goal
T0

Place the ball
T2

Shoot the ball
T3

Watch the goal and 
goalie T1

Scenary
(goal, 
soccer 
field)

CameraSoccer ball

VE

Position Orientation Scale

Goalie

L1

A
B

C

Figure 2: Task tree (A), scene graph (B) and link (C) of the Penalty Shootout interaction technique with Portico [4] 
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DESIGN ASPECTS OF THE INTERACTION WITH 3D 

The HCI and CG communities have already been working 

on the design and implementation of advanced interaction 

techniques with 3D. Different points of view have been 

adopted thus revealing multiple design aspects. We 

summarize these considerations along the three parts of our 

analytical framework: user’s interaction, 3D system and 

links between them. 

Regarding the user’s interaction, relevant considerations 

include the specification of the users expertise with the 

manipulation of the application as defined in Rasmussen 

work [22]. The definition of the application type (AR, VR, 

desktop application) is also considered as crucial in the 3-

DIC model [10]. Given the use of advanced interaction 

technique, it is also required to specify which parts of the 

physical world are involved. It includes a description of the 

objects used and their constraints [27]. It also requires to 

specify how information are transferred from the user to the 

3D  system and vice-versa, as partly addressed in the ASUR 

[8] and MIM [7] models. It goes even to more precise 

description of the gestures and characterization of 

movements that will be performed by the users [19] as well 

as perceptual properties of interest such as visual, tactile 

and auditory properties. 

Regarding the 3D system, as already mentioned X3D [33] 

is the standard to describe the 3D nodes, structure and 

internal animation or behavior. Most of works however 

focus on the description of virtual reality interaction 

techniques such as ray casting and are focusing on their 

behavior or implementation.  Among them the reusable 

library of 3D interaction technique [9], the Petri Net model 

[31], ontology model [14], the 3-DIC model [10] or IFFI 

[23] and Viargo [28] library are complementary 

alternatives. 

Finally, in the literature, the link between our two pillars 

is often limited to the analysis of the required input device. 

Simple taxonomies offer an overview of the possibilities 

such as the Mackinlay taxonomy [18]. More elaborated 

models like RVDT [1] or InTml [9] deal with a particular 

aspect of input device, e.g. the type of data (float, integer, 

boolean) and the number of sensed DOF. 

DISCUSSION 

Obviously, developing advanced interaction techniques for 

3DVE requires to confront multiple design considerations 

and to pay attention to both communities’ preoccupations. 

To do so, offering a structured and refined set of design 

attributes that reconcile these multiple aspects will lead to a 

better understanding of the links between a user’s goal and 

attribute of a 3D scene. For example metrics might be 

extracted to efficiently compare techniques; properties 

might be defined to clearly express how design choices in 

the user’s part impact design choices in the 3D system parts 

and conversely. 

We believe that providing such a structured approach to 

describe the links between task and scene graph is a fruitful 

way to help reason about the design and implementation of 

advanced interaction techniques for 3DVE. The resulting 

model or notation will constitute a pseudo-formal 

description language of interaction techniques for 3DVE. 

From such description, a semi-automatic implementation of 

the described advanced interaction for 3DVE could then be 

built in a platform for rapid development of multimodal 

interaction such as the Dynamo framework [3]. 

CONCLUSION 

Applying advanced forms of interaction to 3D applications 

is required to contribute to a more effective use of 3D 

interactive environment. As multiple types of user and 

context are potentially targeted a user centered approach to 

the design of interactive 3D application is particularly 

expected.  

In this paper we proposed a way to narrow two com-

munities by involving well established design resource of 

each domain as the two pillars of a dedicated approach. We 

then identified a set of existing design and implementation 

supports for bridging the gap between these two pillars. 

During the workshop, we hope to find the opportunity to 

further illustrate the use of this framework on different 

prototypes we have implemented in our lab. We then expect 

a fruitful discussion with the other participants of the 

workshop to identify additional existing design approaches 

relevant to this context of interaction with 3DVE, or 

relevant metrics, properties or considerations. In particular, 

we are interested to discuss what could be the ways to 

tightly anchor 3D specificities in the design of interaction 

technique. We are also interested in refining the links 

between our two pillars with relevant approaches. Finally, 

we hope to hear about similar approaches in different 

contexts, i.e. a context in which advanced HCI and another 

domain are involved and in which engineering supports of 

the two communities have been brought together. From 

such situation we expect to hear about lessons learnt, 

benefits and limits of such approaches. 
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ABSTRACT
Collecting real-world, long-term data from work environ-
ments is a challenging exercise. There are many different, and
well-established, techniques from the fields of psychology
and HCI (such as ethnography, auto-ethnography, diary stud-
ies, video studies etc.) that aim to address this. The choice of
which to use is often determined not only by the nature of the
data being collected, but also the availability and suitability of
both personnel and equipment for the environment in which
people are being studied. While the continuing emergence
of hi-tech solutions (particularly in areas such as video and
voice capture) can help with this by providing less obtrusive
ways of capturing information, they can still be problematic
for large-scale data-gathering experiments. We are currently
working in the domain of the New Zealand forestry industry
with the aim of building up a large repository of data of work-
ers’ activity levels throughout the day (both when at work and
at home) and sleep patterns at night, with the aim of support-
ing safety efforts. In order to achieve this we have chosen
to use a low-tech solution: using lightweight, wearable ac-
tivity trackers with the aim of creating an extensive record
of forestry workers’ activities and well-being. Our goal is to
use this data to identify potentially hazardous workplace sit-
uations.

INTRODUCTION
The recent developments in personal activity trackers have
seen the simple pedometer redeveloped into a data-capture
device capable of a much wider variety of capabilities than
just counting steps. This has led to a proliferation of such de-
vices, as well as the development of associated mobile phone
and ’smart watch’ applications that provide visualisations and
analysis of activity data. While the target users for these de-
vices are typically individuals interested in personal fitness or
their own health and well-being, the fact that these trackers
are low-cost (typically less than NZ$150 per unit) and light-
weight makes them ideal research tools for large-scale data
collection. A description of our research domain follows.

In 2013, fatalities in the NZ Forestry industry were twice the

annual average NZ workforce rate of 5/year [9], and overall
NZs highest rate of workplace injury deaths [3], with num-
bers increasing. The rate of ACC1 claims for the forestry sec-
tor is almost six times the rate for all sectors and currently
costs over NZ$2.3 million per year [4]. Both the severity of
accidents and long-time injury frequency are increasing. The
NZ forestry accident rate is more than 6 times higher than that
of the UK and the death rate is 34 times higher.

Forestry is labour-intensive (most workers undertaking 40-60
hours of work per week). The tasks of tree felling and break-
ing out are the main activities contributing to serious acci-
dents. There is a general consensus that pressure points in-
clude fatigue, dehydration, distraction, isolated work, remote
locations, high staff turnover and production pressure, how-
ever no systematic data has ever been recorded to test these
hypotheses. Major stakeholders (e.g., worker unions, govern-
ment agencies, forestry management corporations) have con-
flicting views of the most significant contributing factors to
accidents.

In a study conducted in 2010 video recordings of eight work-
ers gave some insight into the differences between work pat-
terns of novices and experienced tree fellers [10]. In the ini-
tial study the researcher, Parker, tried to film workers in their
everyday work environment. However he soon found that
what he was recording was not the usual work practices of
the tree fellers, but rather the activities of tree fellers trying
to prevent the researcher getting injured in their hazardous
work environment, or getting in the way of their work activi-
ties.. Subsequently Parker developed a light-weight wearable
camera which was used in the next study, but the cost and
availability of the equipment meant that this study was lim-
ited to just eight participants. Because it has been so difficult
to gather accurate data on worker activities, much of the cur-
rent research into safety efforts for NZ forestry is focussed
on developing robotic solutions (to remove workers from the
equation) or on managing worker behaviours rather than in-
vestigating underlying causes.

In order to understand the causes (and therefore consider the
prevention) of accidents we need a much better understanding
of all of the contributing factors. Typically when an accident
is reported only the immediate circumstances are considered
relevant (what the worker was doing at the time the accident
occurred) whereas we contend that there may be a series of
1New Zealand’s accident compensation scheme, which provides fi-
nancial compensation to New Zealand citizens, residents, and visi-
tors who have been injured in an accident.
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Figure 1. Polar Loop, FitBit Flex and FitBit One

contributing factors that have happened in the time leading up
to the adverse event (and this timescale may be days before,
rather than immediately prior to, the accident). To examine
this hypothesis further, we need a way to capture data over
extended periods of time from large groups of forestry work-
ers with the data including all of their activities, not just what
they are doing at work. So if (as is often stated) tiredness is
a contributing factor, what is the cause of the tiredness? Is
it solely the physical effort of the job (estimated as equiva-
lent to running a marathon a day) or is this exacerbated by the
fact that many of the workers are involved in sports outside
of work and have perhaps been playing rugby for much of
the weekend, or have poor sleep patterns, or have a two hour
drive to get to the workplace each day etc.

RESEARCH OVERVIEW
The longer term aim of our research is to predict (and ulti-
mately prevent) hazards by harnessing the power of a new
generation of lightweight, wearable technology (so-called fit-
ness trackers). We aim to create an extensive record of
forestry workers’ activities and well-being to build up a con-
textual history. Mining this record, we will identify hazard
patterns and ultimately look at ways of encoding pattern de-
tection algorithms within similarly lightweight, wearable de-
vices to provide real-time hazard warnings.

Our work is currently structured into six components:

• Comparing different activity trackers and their suitability
for collecting the type of data we are interested in

• Pilot studies in the field with different categories of work-
ers and different devices

• Refining the nature/type/scope of data to be gathered

• Large scale data gathering

• Data analysis and development of safety models

• Development of technological solutions

We are currently experimenting with activity trackers such as
the FitbitFlex, Polar Loop, Fitbit One etc. shown in Figure 1.
These have similar capabilities to each other including mon-
itoring of steps taken by the wearer, identifying stair or hill-
climbing activities, estimating calorie burn (based on steps
taken and pre-set parameters for age and weight) and moni-
toring sleep patterns. The data produced is then provided to
users by way of graphs and data logs (see Figure 2). The raw
data can also be accessed via an API at a lower level of gran-
ularity, so it is possible to monitor activity on a minute by
minute basis.

Our initial studies with these devices have enabled us to gen-
erate sets of data which we can use in our first experiments,
and we are combining these with participant diary studies in
an effort to match a user’s record of their activity and well-
being with the device data. We also have initial data regarding
usability of the devices from the perspective of the user. This
will enable us to consider things like how much effort is re-
quired to use the device (the less interaction our participants
have with the device the better), how often the battery needs
to be recharged, whether wearing the device has any effect on
everyday activities, etc.

Our proposed solutions are based around our previous re-
search expertise in the areas of ethnography [8, 7], formal
modelling of interactive systems [1, 2], complex event pro-
cessing [5, 6] and forestry safety [10, 11].

THE CHALLENGE
The major engineering challenge we are facing is how to
use simple, cheap, lightweight, wearable devices (activity
trackers) in smarter ways for large-scale data-collection. The
availability of these devices and their low cost mean that they
are an ideal choice for using in our research environment. We
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Figure 2. Standard Statistics for Sleep Cycle and FitBit Devices

can provide large groups of workers with the activity moni-
tors and the devices are small and unobtrusive enough to be
used over long periods of time to gather data. Conversely,
many of these devices do not provide the ability to alter the
parameters of the data being collected and cannot be pro-
grammed or extended to provide different kinds of feedback
to users. We envisage that the simplest devices will be used
for initial data gathering and experimentation, while more
sophisticated devices (programmable smart-watches like the
Pebble for instance) will be used for the final technological
solutions.

Additional challenges of our work include:

• Identifying useful and informative patterns from large
quantities of data

• Matching the patterns to hazardous situations

• Determining hazard predictions from the patterns

• Incorporating real-time alerting into small wearable de-
vices

Of most interest here is the challenge of working with lim-
ited interactive devices rather than the more common problem
of dealing with increasingly complex systems. In particular
finding novel ways of making the most of their data capa-
bilities as well as exploring options to enable them to act as
warning mechanisms in a hazardous environment.

For our current domain of interest, the forestry sector, our
goal is to use trackers which require minimal user interaction
and which are as unobtrusive as possible, at the same time
we want our final solutions to be able to collect a rich set of
data. Adapting parameters to be captured and understanding
how this can be achieved using these simple devices is an
additional challenge we face. There are, of course, may other
domains in which similar types of tracking may be useful and
our work may be extended to investigate some of these as the
project progresses.
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ABSTRACT
Auditory displays have been around for some time, but lack-
ing is any widespread understanding or consensus on how to
develop and evaluate these interfaces. In the first part of this
paper, we summarize the evidence for this lack of understand-
ing and consensus, and go on to outline an approach to audi-
tory display design based on Soundtrack composition. Space
permits only an overview of the method, techniques and tools
developed, but the presented method encapsulates the prin-
ciples and ethos intended in applying ideas from soundtrack
creation to auditory display design.
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INTRODUCTION
Auditory display (AD) is the use of sound to communicate
information from a computer to the user. The technique of us-
ing non-speech audio to convey information or perceptualize
data is known as sonification. With a role similar to the use
of visual displays in the human-computer interface, sound is
employed to enable human-computer interaction, data explo-
ration, accessibility and present aesthetics. ADs permit eyes-
free usage by visually impaired users as well as by sighted
users who need to use their sight for other tasks or who don’t
have line of sight of the display. The importance of sound
in interaction design is growing as technology becomes in-
creasingly embedded and portable (with smaller or even no
screens) and the range of contexts of use continues to diver-
sify. Some examples of auditory display included the Geiger
Counter, which, as an early form of ubiquitous sonification
[12], provided auditory clicks to display levels of radiation.
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Audio has also been used for process monitoring, which of-
ten involves real-time and continuous audio playback in order
to communicate directly to the user. For example, Cohen cre-
ated the ShareMon system that alerted users to file sharing
systems on an Apple Macintosh network [9]. Vickers created
CAITLIN, a system that used audio feedback to help with
program debugging [21]. Audio has also been used to rep-
resent the completion of tasks on the desk top, for example,
Brewster designed a set of user interface widgets that used a
collection of non-speech audio messages, known as Earcons,
to enhance the visual feedback [6].

Some Challenges for Auditory Display Designers
• Sound is better at representing temporal information. The

challenge, therefore, is representing spatial relationships
with sound.

• Managing overlapping streams of information and avoid
masking, whereby the perception of one sound is affected
by the presence of another.

• Developing methods and tools to support the process of
creating auditory displays.

• Taking an understanding of visual-HCI and seeing if it
translates across to audio-HCI. Doing this by understand-
ing what works best in the different mediums audio/visual.

MOTIVATION
The soundtrack of a film serves to support action; anchor
meaning; develop thematic narrative strands; portray on and
off screen action; enhance emotional reaction and generally
give a sense of ‘reality’ to the real-world noises that objects
make as they are moved, hit, and interacted with. The craft of
soundtrack composition is well established and the creativity
of the composer (sound designer) is supported and encour-
aged as a result of existing theoretical guidelines [7], tech-
niques [20, 15], software-based tools, and, if the composer
requires, optional sample and sound libraries. Soundtracks
are composed and constructed with great intent and their suc-
cess is apparent. It therefore makes sense to explore how this
knowledge could be methodically applied to support the de-
velopment of other applications that require sounds to be skil-
fully designed and arranged to display information.
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ADs also serve to support action; anchor meaning; develop
thematic content; represent both visual and non-visual un-
seen processes; enhance reaction and give a sense of real-
ity to the real-world noises that virtual objects make as they
are moved, hit, and interacted with. However, (unlike sound-
track composition) it is argued that many sonifications lack an
aesthetic quality [22] and that the choices that went into the
data/information - sound mapping lack rationale [14]. The
results of the survey carried out by [14] revealed that many
designers found it hard to incorporate audio due to a lack
of existing structured methods, design tools and awareness
of the possibilities. The authors concluded that as a result,
design guidelines for auditory interfaces need to support a
novice designer but also not limit the more experienced de-
signer as well as supporting creativity and allowing designers
to express and sketch out their initial ideas. It was also ob-
served that design guidelines need to incorporate ideas and
best practice concerning aesthetics.

Position
As a result of the above, we argue that the principles, tools
and techniques of soundtrack composition can inform the de-
sign of a method for the creation of ADs. Specifically we
propose that the application of such a method could support
the iterative, creative choices that a designer will make from
start to finish, as well as promote the creation of aesthetically
considered ADs. As part of the process of developing the
method, we aim additionally, to identify what sort of inter-
faces the method will be used to design. For example what
will the function of the display be - monitoring? presenta-
tion of data for understanding and analysis? Feedback and
acknowledgement of an interaction upon the interface, a com-
bination?

Background
The idea of using music and soundtrack composition as well
as other creative approaches from artistic practice to address
issues concerning accessibility and aesthetics in the computer
interface is not new. It was proposed by [10] that the use
of sound within the arts could inform the use of sound for
software development. The author argued that the role and
function of sound in film as proposed by Film Critic and the-
orist Michel Chion [7] can take on a similar role and function
within human-computer interaction: Namely the ability that
sound has to alter perceptions of time and space as well as
alter the perception of the speed and pace of movement. The
author argued, by way of example, that the fact that sound can
be designed to mimic texture, could enable an interface user
to “feel” as though they have made contact with an interface
object, even if it, in fact, remains unseen or virtual.

The perception of physicality that sound can give to an object
or interaction was also described by [8]. The author argued
that the overall feel and perception of an interaction can draw
on the function of film sound to induce and communicate
emotion. The author put forward the view that because mu-
sic can create ‘arousal’ in the user, it can help the designer in
focussing the user’s attention, and as a result filter out noise-
related distractions in the workspace. Additionally, the author
pointed out that the use of repeating musical motifs can aid as

an important cue to memory, which in turn could support the
work flow by reducing dependence on visual communication.

The benefits of using sound to support work flow was high-
lighted by [3]. The authors argued that a conceptual and
theoretical offering concerning how to use sounds for com-
puterised instructional environments was needed. They ar-
gued that there are four ways in which the best practices of
film sound can inform the sound design within computerised
learning environments. These are as follows:

1. Consider sound from the start of the design process as op-
posed to after the visuals are put in place.

2. Have the means to ‘listen’ out for objects, actions, envi-
ronments, emotions and physical or dramatic transitions
within the narrative in order that they help shape the sound
design.

3. Take into account the way that people hear and listen to
the different types of sounds, albeit passively, actively or a
combination [7, 22, 11].

4. Employ tools used on soundtrack composition [20] to sup-
port a methodical approach to incorporating sounds within
the context of use.

OUR APPROACH
There have been several contributions toward establishing
methods, techniques and tool kits for developing ADs [2, 18,
13]. With the aim to support novice AD designers, many of
these are bought together and reviewed in [4, 5]. Interest-
ingly, the authors conclude by recommending that a novice
designer would benefit from “consulting someone with exper-
tise in these methods”. It was also argued by [14] that many of
the methods are not accessible to an inexperienced designer
and that, perhaps for this reason, there still is a general fail-
ure on the part of AD designers to take up methodologies and
guidelines for the development of ADs.

The approaches reviewed above in the background section
outline those contributions that have explored what arts prac-
tice can bring to the design of auditory interfaces. The re-
search is rich in offering theoretical insights into the benefits
of film sound and how an interface designer might be encour-
aged to explore its potential. However, despite previous re-
search in this area, we argue that a designer contemplating
how to apply principles of film sound to the creation of an au-
ditory display, having researched any proposed approaches,
would come away with inspiration, techniques and methods
to support only part of their design, rather than the knowledge
or confidence in how to create an entire display.

As a result we support the argument that creating a method for
producing auditory display based on soundtrack composition
can help an AD designer by offering a structured, accessible
and supportive set of guidelines and techniques to assist them
through the creative process. A distinguishing feature of our
proposed method is that it is designed to encourage creativity,
having its foundations in creative practice. In turn we spec-
ulate that the interfaces produced using the method may be
somewhat characteristic, because they may manifest artistic
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and creative qualities, making them more interesting and en-
gaging to use [22].

The Method
To date we have developed the principles of the method and
conceptualised the techniques that the method will support
through a series of method steps and supporting tool kit. The
steps are supported by use of a Cue Sheet /Sound Map1, a
Database and a Time-line. We have also carried out early
stage evaluation of the work. We present these developments
below.

Principles
We propose the following principles based on a synthesis of
our investigations into soundtrack composition and the ap-
proaches that composers take [17], along side our investiga-
tions into designing auditory displays. We feel they encap-
sulate what the method should support and what they should
enable the designer to achieve as a result of applying it.

1. Support the creativity of the designer

2. Draw upon the existing body of work and know-how sur-
rounding soundtrack composition and approaches to de-
signing ADs.

3. Support the design process from start to finish

4. Permit a designer to sketch out ideas and work in an itera-
tive way

5. Utilise and make accessible the functions of a soundtrack
and the proposed benefits of these to ADs and sonic inter-
action design

6. Support the production of a functional and aesthetically
pleasing display

Method Steps
The following steps are designed to support the process from
start to finish and combine techniques from human-computer
interaction and soundtrack composition

• Method Step 1- Scenario Analysis: the designer is pre-
sented with the scenario and specific use-case for an initial
read through. The use case outlines the user and the story
of their interaction with the interface

• Method Step 2 - Interface and Interaction design: the de-
signer analyses the scenario in terms of the users, the mode
of listening they employ [11], the context of use and the
initial interaction triggers.

• Method Step 3 - Information Design: the designer analyses
the scenario in order to gather, categorise and map out in-
formation and data requirements within the interface. The
results of this step are used to fill out the details of a Cue
Sheet.

1According to [20] A Cue Sheet (or sound map) acts as a guide
for the sound team follow the different tracks of dialogue, music
and sound effects. The tracks are represented along a time-frame
of seconds and minutes and laid out horizontally. A “time-frame of
dramatic sequences and with notations of sonic elements that may
enhance the storytelling aspects of the film”

• Method Step 4 - Mapping information and interaction to
sound: the outputs from the Cue Sheet/ Sound Map map di-
rectly to a database of sound design ideas and the designer
can prototype various information to sound mappings.

• Method Step 5 - Iteratively auditioning and reorganising:
the designer places the sounds on a time line in a first cut
prototype of the sequence of interaction. The step then
proceeds with the designer iterating through a process of
auditioning and reorganising the sounds, taking into ac-
count the fact that certain interaction sequences may cause
sounds to be rendered in parallel and/or in different se-
quences. The objective of this step is to examine the aes-
thetics of the sounds as they may be heard both individu-
ally in different interaction contexts and in relation to one
another.

Techniques & Toolkit
Our method supports the designer in carrying out the method
steps accounted above through a set of techniques that can
be supported by the following: a Cue Sheet /Sound Map, a
Database and a Time-line. To date we have begun an im-
plementation of these in the graphical-programming language
Max/MSP, as a set of tools that can be applied to support the
designer.

The Cue Sheet/ Sound Map supports a narrative approach to
both the gathering and the mapping of the requirements for
the sound design for the auditory display (method steps 1-
3). By utilising the cue sheet the designer is supported in the
following ways:

1. Considering the story of the user interaction with the in-
terface[19]; the context of use for the interface alongside
the mode of listening that the user will employ in order to
perceive and comprehend the sound.

2. Identifying characters, objects, locations, actions, themes,
emotions and transition points in the story [20] in order
that these can mapped to sound design ideas that support
how these can be communicated most effectively through
sound.

3. Identifying the physical properties of the information that
needs to be sonified as well as the nature of how this might
change as a result of changes in the interaction or data

4. Considering the story of the actual sound itself in terms of
how it evolves in relation to the story it is telling [1]. The
means to apply a linear, narrative-based who, what, where
why, when structure to inform when the sounds occur, how
long they occur for, how they change over time and what
causes them to change.

5. Taking into account the non-linear nature of human-
computer interaction by considering the transition points
in the story. Designing sounds to smooth these points in
order that the sound remains consistent [1]. In turn being
able to design sound for several possible use-cases for one
given scenario.

The Database acts as a knowledge base of sound design
guidelines to support a specific function within a soundtrack.
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The resulting output of the Cue Sheet/ Sound Map directly
maps to the different categories within the Database (method
step 4). The categories are largely based on musical styles;
structures; components and parameters.

The Time-line serves as an interactive tool to support the
placement, audition and arrangement of the sounds within the
display. The Time-line parallels and further supports the cue
sheet in that it also caters for the non-linear nature of human-
computer interaction, with the specific ability to focus on the
affect this has on the sounds. The designer is encouraged to
arrange and audition sounds according to the particular use-
case under consideration (method step 5). The time line also
encourages a potential investigation into the aesthetics of dif-
ferent sound sequences.

Initial Evaluation
We have carried out a preliminary evaluation of an early stage
version of the Cue Sheet /Sound Map, which indicated its
value as an organising mechanism in the AD design process,
but which also highlighted the need for tight integration with
a knowledge base of sound design principles, which guided
our further development of the method and associated tech-
niques and tools [16].

CONCLUSION
The creation of auditory displays for the interface is an on-
going challenge. Among the many future challenges for re-
searchers are the design and evaluation of sound for mobile
devices; the use of spatial audio and the consideration of in-
creased and wide-spread usability and personalisation of in-
teractions. In this paper we have presented our ideas towards
a method, techniques and a tool kit to support an interface
designer in applying audio. The method presents an inte-
gration of techniques employed in human-computer interac-
tion design, such as user scenarios, with approaches and tools
utilised in soundtrack composition. We hope that this poses
an interesting design position and raises awareness of both
the importance and the challenges involved in designing au-
dio for the interface.
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ABSTRACT
There exists relatively little work on the design of cross-
modal interfaces, that is, interfaces which support collabo-
ration between individuals that use different sets of modal-
ities to interact with each other. In this paper, we examine
the role of design patterns based on two phases of a design
process. Firstly, we examine the role of participatory design
workshops in identifying patterns that arise out of conflicting
requirements between different interaction modes. We then
describe how an analysis of these conflicts can lead to pattern-
based solutions to interactional and implementation issues in
the design of cross-modal displays.
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INTRODUCTION
Cross-modal interaction is fundamental to human perception,
involving the coordination of information received through
multiple senses to establish meaning [10]. An example of this
is when we both see and hear someone talking and associate
the words spoken with the speaker, thus combining informa-
tion received from two signals through different senses. In
the design of interactive systems, the term cross-modal in-
teraction has also been used to refer to situations where in-
dividuals interact with each other while accessing a shared
space through different modalities such as graphical displays
and audio output [11, 9]. In this paper, we examine how de-
sign patterns for cross-modal collaboration can be identified.
We describe how we used an approach based on activity pat-
terns [6] to uncover design patterns from two phases of a typ-
ical design process. First, we examine the role of participa-
tory design workshops in identifying patterns that arise out of
conflicting requirements between different interaction modes.
We then demonstrate the application of activity patterns by
reflecting on the evaluation phase of a cross-modal tool that
supports collaborative diagram creation and editing by visu-
ally impaired and sighted coworkers. We also show how an
analysis of the conflicts revealed by an activity theory-based
analysis of these patterns can lead to solutions to interactional
and implementation issues in the design of cross-modal dis-
plays.

BACKGROUND
Despite significant progress in the use of the audio and hap-
tic modalities in interaction design, research into cross-modal
interaction has so far remained sparse. Initial investigations
have nonetheless identified a number of issues that impact the
efficiency of collaboration in cross-modal settings. For ex-
ample, an examination of collaboration between sighted and
visually impaired individuals on an interactive puzzle game
highlighted the importance of providing visually impaired
collaborators with a continuous display of the status of the
shared game [12]. Providing collaborators with independent
views of the shared space, rather than shared cursor control,
was also found to improve orientation, engagement and coor-
dination in shared tasks. In another study, a multimodal sys-
tem combining haptic devices with speech and non-speech
auditory output was used to examine collaboration between
pairs of visually impaired users on graph reading tasks [8].
Results showed that the use of haptic mechanisms for moni-
toring activities and shared audio output improves communi-
cation and promotes collaboration.

Although scarce, the literature on cross-modal collaboration
has begun to generate insights into the knowledge that is
needed to come up with effective designs to support interac-
tions involving individuals with differing perceptual abilities
across various domains. We propose to use design patterns
as a means to capture such knowledge so that it can be ef-
fectively leveraged to provide solutions to support accessible
collaborative working.

APPROACH

Theoretical foundation
We consider activity patterns [6] as a potential guiding frame-
work for identifying and implementing design patterns for
cross-modal displays. According to this framework, Alexan-
der’s patterns [1] could be appropriated to embody the princi-
pals of Activity Theory (AT) and hence could be used to anal-
yse activity in terms of understanding tool-mediated work in
its context [2]. AT views human activity in terms of a system
of tool-mediated actions carried out by a subject (i.e. an indi-
vidual or a group of individuals) in order to achieve a desired
outcome. Actions are characterised in terms of how they are
organised within a community context, and how they are reg-
ulated by internal rules and mediated by a division of labour.
This unit of analysis is conventionally represented by a trian-
gular model to show how its elements interact with each other
(see Figure 1).
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Figure 1. An activity system as conceptualized by activity theory.

According to [6], there are parallels between the design pat-
terns principles as introduced in architectural design [1] and
those of human activity as conceptualised by AT’s unit of
analysis. These include; the definition of a pattern in terms
of three related components expressing the relationship be-
tween a given context, a problem and its solution, which is
consistent with the method of AT; and the characterisation of
a problem in a given context as being caused by a system of
conflicting forces that arise in that context, which could be
captured through AT’s conceptual tool of contradictions. Ad-
ditionally, the hierarchical levels of activity in AT can also be
used in a similar way to the Alexandrian concept of scales to
help structure the scope covered by activity patterns. The con-
cept of activity levels in AT are hierarchically structured into
three levels; activities, actions and operations where a given
activity is realised through a set of concrete actions, which
are in turn accomplished through a series of operations. This
gives patterns a sense of scale from high-level activities down
to low-level operations. According to [6], patterns could be
written to reflect each element in a given activity system - the
design of mediating artefacts; the work of a subject; the rules
and procedures; and the roles within the division of labour
or community of the work group - as well as organised into
a coherent pattern language that preserves the unity of these
elements within each of the three levels of activity.

In order to assess the feasibility of this organisational frame-
work in supporting the process of identifying design patterns
in cross-modal design, we applied it to data gathered from
two phases of a typical process; requirements capture through
participatory design workshops, and evaluation.

Initial participatory design workshop
The first stage of our approach involved setting up an initial
workshop with 8 to 10 participants drawing from a network
of users in the particular domain of focus. The workshop was
organised around three main activities; focus group discus-
sions, technology demonstrations, and audio-haptic mock-
ups design. The aim of the focus discussions is to identify
current best practice in the domain of concern, how current
access technology supports this and a list of tasks which are
either difficult or not possible using current access solutions.
The technology demonstrations involve presenting a range of
candidate technologies that could be used as a basis for de-
signing solutions to the issues identified in the focus discus-

sions. Visually impaired users often have a good knowledge
of the access solutions they personally use, but do not nec-
essarily have direct access to or experience of other relevant
technologies. It is important that the capabilities of a given
technology are demonstrated without reference to an actual
application. For example, in order to ensure an application-
independent demonstration of the haptic devices, we used a
custom program that allowed us to switch between differ-
ent effects that could be simulated with these devices, such
as vibration, spring effects and viscosity. The custom pro-
gram allowed us to manipulate various parameters to demon-
strate the range of representations and resolutions that could
be achieved with each device in real-time. In the audio-haptic
mock ups design phase of the workshop, we asked partici-
pants to think through new designs, having had hands-on ex-
periences of the capabilities of the candidate technologies. In
this phase, participants worked in small groups including one
or two members of the design team to identify technology
solutions to the problems that arose in the focus discussions.
To close the session, participants presented the audio-haptic
mock-ups they constructed with their group to the rest of the
participants for further discussion.

An unexpected outcome of these initial workshops was that
the invited users spontaneously agreed to sign up to a email
list which from their point of view provided a forum for the
sharing of best practice and workarounds, and for us provided
a community forum for the discussion of design issues and a
user group we could draw upon for participants in later for-
mative evaluations.

We used the activity patterns approach to drive retrospective
analysis of data gathered from the workshop. Participatory
design activities generate a huge amount of data and pat-
terns could help with the process of organising the themes
that emerge from this data. The concept of contradictions can
be a useful guide to identify the tensions that exist in activity
systems constructed to model the requirements and scenarios
described by workshop participants, and hence could lead to
insights about design solutions that could resolve such con-
tradictions.

Example: Conflicting requirements
In an example of such scenarios, while discussing his expe-
rience of working with sighted colleagues and clients, a vi-
sually impaired producer described his frustration with the
inaccessibility of graphical and diagrammatic representations
used in digital audio workstations. The visually impaired pro-
ducer explained how his work with sighted colleagues often
involves exchanging projects back and forth in order to com-
plete sub tasks involving the manipulation of audio captured
using inaccessible formats or requiring interaction with in-
accessible audio plugins. In some cases, these accessibility
issues have led to his exclusion from potential collaborative
projects because the standard formats used are not readily ac-
cessible or would take too long to work with.

In a second scenario, a visually impaired participant who spe-
cialises as an accessibility trainer described a similar experi-
ence with inaccessible visual tools. In this case, the issue was
specific to working on collaborative projects that were coded
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using an audio programming language known as Max/MSP,
which is a visual programming language that uses diagram-
matic representations as its main coding components. The
visually impaired participant highlighted how inaccessible
such programming languages are even though they are used
to code audio, which could be considered a natural working
modality for visually impaired individuals.

Figure 2. An activity system showing some contradictions captured
through the PD workshop. Contradictions are highlighted with red cir-
cles and wavy arrows.

Both scenarios above could be captured by the activity sys-
tem shown in Figure 2. Here, there is a clear contradic-
tion between the subjects of the activity, i.e. the visually
impaired audio producer and accessibility trainer, and the
tools available to them as mediating artefacts in the context
of their activities. Capturing these contradictions allows us
to think about possible design solutions to eliminate them,
which could eventually lead to the development of fully artic-
ulated design patterns that embody such solutions.

Identifying design patterns through evaluation
We used the activity patterns approach to reflect on the de-
sign of a diagramming cross-modal tool, which we evaluated
with visually impaired and sighted users. The tool combines a
visual diagram editor with auditory and haptic capabilities to
allow simultaneous visual and non-visual interaction. That is,
two coworkers collaborate on shared diagrams by accessing
and editing them through the visual modality (for the sighted
user) and the combination of audio and haptic modalities (for
the visually impaired user) [9].

We deployed this collaborative tool in various workplaces in-
cluding a local government office and a charity organisation
where visually impaired and sighted coworkers access and
edit diagrams as part of their daily jobs [9]. In the following,
we describe an example of applying the activity pattern ap-
proach retrospectively to analyse data that we gathered from
one of the field studies and how this helped the process of
identifying potential patterns for cross-modal design.

Example: Consistency of interaction steps
In this example, a visually impaired manager (VI) and their
sighted assistant (S) at a local government office edit an or-
ganisation chart to reflect recent changes in managerial struc-
tures. At one point during the interaction, the pair decides to

create a connection between two nodes on the chart diagram
to highlight a relationship between an existing and a new po-
sition. They do this while discussing how the tool should be
used to create this relationship.

To create a connection between two nodes using the non-
visual audio-haptic editor, the visually impaired user must
1) browse the chart to locate the first node and select it, 2)
browse the chart again to locate the second node and select it,
3) select the type of connection they wish to use and 4) issue a
command to create the desired connection. To do the same in
the graphical editor, the sighted user must 1) select the type
of connection they wish to use from the graphical tool bar,
2) select the first node on the chart, 3) drag the connection to-
wards the second node using the computer mouse, and then 4)
release the mouse to create the connection. Following the ac-
tivity patterns approach, the actions of creating a connection
between two nodes using the visual and non-visual editors
can be represented as the two independent activity systems
shown in Figure 3, which highlights a contradiction between
the operational rules in the two activity systems; there is a
mismatch between the interaction steps that each collabora-
tor has to follow in order to create a connection between two
nodes on the chart. Modelling the collaborative action of cre-
ating a connection in this manner has therefore uncovered a
potential design flaw - which manifests itself as contradic-
tions - that could hinder collaboration. Addressing this de-
sign flaw could lead to a design pattern that can eliminate the
issues raised by the contradictions. For instance, the potential
design pattern could describe the need to reconcile the two
mediating artefacts in this context by ensuring Equivalence
and Consistency of Interaction Steps between the visual and
non-visual modalities.

Figure 3. Two activity systems for creating a connection between two
nodes using the non-visual (1) and the visual (2) editors. Contradictions
are highlighted with red circles and wavy arrows.

Interaction and implementation design patterns
The conflicts highlighted when applying the activity patterns
approach have also led us to identify a number of design pat-
terns that could be used to guide the development of cross-
modal software systems. Often, we found that interactional
needs must be echoed in the actual implementation of such
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cross-modal systems. In particular, we explored how exist-
ing software design patterns (e.g. [4]) could be extended in
order to accommodate needs that are specific to cross-modal
interface implementation. Here too, the conceptual tool of
contradiction has helped our analysis and guided the process
of matching interaction and implementation design patterns.

Example 1: Managing input and output conflicts
For instance, cross-modal software applications must be able
to manage multiple input and output streams through various
controllers. The Observer pattern is particularly suitable for
this kind of applications [4]. That is, input and output streams
can be easily modelled as controllers 1 and observers respec-
tively. However, this creates potential conflicts when users
attempt to interact with shared content. Care must therefore
be taken in order to avoid situations where changes in one
modality trigger unwanted effects in another.

An example scenario where the above issue could arise is
when editing the positions of objects on a interface. In our
cross-modal application, moving diagram items can be ac-
complished using a mouse drag-and-drop in the visual modal-
ity. In audio, the same task could be accomplished by select-
ing an item and using the keyboard arrow keys to change its
position. Visual feedback of movement is realised by refresh-
ing the visual display and updating the coordinates of the item
in real-time, whereas that of audio is realised by displaying
audio feedback in response to each keyboard input stroke.

The refresh rate of mouse input is typically sampled at a high
rate in order to ensure smoothness of movement, which in
turn yields a high volume of data coordinates. But while
graphical displays can cope well with such high frequency
updates, an auditory display may end up with a fairly high
quantity of sounds to display which, if not managed, could
amount to pure noise. We have employed an analysis of
contradictory conflicts using the activity patterns approach
to derive a variation on the Observer pattern that we dubbed
Cross-Modal Observer. This pattern is an example of how
an interactional need - in this case having equal access to a
shared space - requires carefully engineered implementation.
The Cross-Modal Observer pattern builds on the original Ob-
server pattern by introducing a reference to the source of the
input controller that could then be used to filter out unnec-
essary data output streams. Thus, unnecessary output, such
as displaying audio in response to actions issued through the
graphical display, can be filtered out to enhance the usability
of the auditory display as well as the overall performance of
the cross-modal system.

Example 2: Supporting awareness
Another example of where an interactional need could be
echoed in, and hence help establish a cross-modal implemen-
tation pattern is the need to support awareness. Maintaining
awareness is critical in group collaboration [5] and should
therefore be adequately accounted for in cross-modal collab-
orative systems.

1This term comes from the Model-View-Controller [7] software de-
sign pattern.

In a collaborative system, accessing shared resources con-
currently can lead to inconsistencies in the underlying data
model representation. In order to address this, a locking sys-
tem can be used to synchronise the interaction by forcing any
user-issued editing command to acquire a lock on a piece of
data before changing it. In our collaborative application, this
meant that every edit message must be preceded by another
message carrying a lock request. Once finished with the data,
a lock release message is then sent to the server in order to
free resources.

When requesting/releasing a lock, the minimum information
that a message must contain is that of the source as well as
the specific item that needs to be locked/unlocked for edit-
ing. From the point of view of the interaction, this informa-
tion specifies the subject and the object of the editing action.
Since the lock request and release messages are sent both
when an edit action is initiated and terminated, the locking
system mirrors the interaction of the user with the system, and
can thus be used to convey awareness information about each
user’s actions to other collaborators. We thus derived a de-
sign pattern which we dubbed Lock Driven Awareness to im-
plement and support awareness in cross-modal collaborative
displays. This pattern allows developers of cross-modal col-
laborative systems to leverage the locking technique, which is
often needed to manage access to shared resources. Addition-
ally, information about the source of an action and its object
of interaction could be augmented to include more detailed
awareness information, such as the type of action and how it
affects the content: move, rename, delete etc.

DISCUSSION
The design of cross-modal collaborative systems presents a
unique set of challenges because such systems must allow in-
dividual users to equally contribute to the shared tasks while
accommodating their individual perceptual differences. To
date, no research has examined how to capture the knowl-
edge required to design technology that makes cross-modal
collaboration easier.

In our approach, the participatory workshops played a key
role in identifying barriers to collaboration in the respective
domains and identifying potential solution stems for these
problems. The concepts of conflicting forces and contradic-
tions in AT have proved valuable in highlighting mismatches
or incompatibilities in cross-modal interaction. Typical mis-
matches we have encountered include:

1. Mismatches in the series of actions required to achieve the
same result through different interfaces to a system.

2. Mismatches between the representation of actions per-
formed in one interface and the way in which those actions
are represented in another interface.

Having used AT-based analysis to uncover the mismatches or
contradictions, we have found that further analysing the con-
tradiction with the aim of defining a pattern solution can lead
to patterns at either the design or implementation level which
can remove the issues raised by the contradictions. Further-
more, pattern solutions derived in this way can be sufficiently
abstract to be considered as providing useful guidelines for
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design beyond the specific domain of interest. For example,
ensuring Equivalence and Consistency of Interaction Steps
between different interaction modes, and implementing Lock
Driven Awareness to implement and support mutual aware-
ness in collaborative systems, are design techniques which
appear appropriate and applicable beyond the design domain
of diagramming systems. Design patterns and pattern lan-
guages have been shown to facilitate the capture, presenta-
tion and communication of design knowledge [3]. We pos-
tulate that designers and application domain experts in cross-
modal displays could benefit from using an activity patterns
approach as both a means to identify and address design is-
sues as well as a uniform representation for the design knowl-
edge they generate.

CONCLUSION
We proposed that designers and application domain experts
in cross-modal collaboration could benefit from using design
patterns as a uniform representation for expert knowledge.
To this end, we explored the question of how potential pat-
terns can be uncovered from an iterative design process and
suggested that activity patterns could be used as a structured
method to address this question. One of the key benefits of
using activity theory to identify patterns is the conceptual tool
of contradictions, which can be a useful guide for designers
to identify the tensions that exist in their designs when used in
context and modelled as activity systems. We have exempli-
fied how this approach was useful for us in managing require-
ment data from participatory design workshops as well as in
the evaluation phase of a cross-modal collaborative tool. We
plan to use this approach to both generate and articulate an
initial set of patterns to form a pattern language for design-
ing cross-modal collaboration, which we will then validate
by applying the patterns in future design iterations and in-
corporating them in future studies and design and evaluation
activities.
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ABSTRACT
If interactive computing systems development is to be con-
sidered an engineering discipline, we need methods and tools
to help us reason about and predict the quality of systems,
from early in the design process. This paper provides a brief
overview of work we have been carrying out in the general
area of evaluating and ensuring the quality of interactive com-
puting systems. Some of the work currently being carried
out is also discussed. Discussed approaches range from the
formal verification of user interface models through model
checking, to the reverse engineering and model based testing
of implemented interactive computing systems.

INTRODUCTION
Software has become present in all aspects of our lives, from
safety critical applications, such as medical devices and the
cars we drive, to social networks and games running on our
phones. As the losses and disruption caused by software fail-
ures rise in severity, so does the need to guarantee that soft-
ware will function correctly. This is a particular challenge
for interactive computing systems, given not only the pres-
ence of the human factor, which must be considered during
the analysis, but also the continuous evolution of interaction
and implementation technologies, which make it difficult to
asses, a priori, the quality of a system at development stages.
Nevertheless, if the development of user interfaces is to be an
engineering discipline, it must have techniques and tools to
enable this analysis during development so that quality can
be measured and predicted.

This paper briefly describes work that we have been carrying
out to support the analysis of interactive computing systems.
Building on that work it then outlines our views on some fu-
ture lines of research. The rational behind the proposals for
future work is that we need techniques and tools that better
fit the typical development process of interactive computing
systems. That is to say, techniques and tools that enable us to
analyse the systems as they are developed. To achieve this we
need means of leveraging, not only the analysis of any models
that might have been produced during development, but also
of the source code produced.

PREVIOUS WORK
One major goal of our work is to support the exhaustive, sys-
tematic and, and much as possible, automated analysis of in-
teractive commuting systems. With this aim as the backdrop,
a number of research direction have been pursued and are now
discussed. A common trait of all the approaches is the focus
on the system. That is, the main requirement is that either
a model of the system, or the actual system, is available for
analysis. An alternative approach, not explored here, would
be to focus on cognitive models of the user (see, for example,
ACT-R [1] or PUM [19]).

In order to support the systematic and exhaustive analysis
of user interfaces, we have developed the IVY workbench1

[6]. The tool supports the formal verification of interactive
computing systems using model checking [8]. It aims to
cater for the full cycle of analysis, from modelling to inter-
pretation of the verification results. Models are expressed
in a domain specific language (MAL interactors), and prop-
erties for verification in Computational Tree Logic (CTL)
[8]. IVY has been applied to a number of different systems,
mostly in safety critical domains (for example, medical [5]
and aerospace [18]). How best to fold considerations about
the user into the analysis has been a recurring concern, and
is typically done by making explicit assumptions about how
the user will react to the user interface [4]. The goal being to
guarantee that only cognitively plausible behaviors are con-
sidered during the verification.

IVY has proven suitable to analyze control panel and WIMP
style interfaces, but less so when considering larger inter-
action contexts, such as when considering ubiquitous com-
puting systems. With the APEX framework2 [16] we have
specifically targeted ubiquitous computing environments.
The framework combines a modelling tool (CPN Tools [13])
with a 3D application server (OpenSimulator3), in order to
combine formal verification and prototyping. On the one
hand, the models capture the behavior of active objects in the
environment (for example, sensors or public displays), and
are amenable to formal verification of their behavior [15]. On
the other hand, the use of the 3D application server for proto-
typing purposes enables an empirical assessment of the user
experience of the systems. The approach supports a multi-
level evolutionary prototyping approach, where simulate de-
vices can gradually be replaced by their physical counter-
parts. The simulation itself can resort to models of device

1http://ivy.di.uminho.pt (last visited 09/04/2014)
2http://ivy.di.uminho.pt/apex (last visited 09/04/2014)
3http://opensimulator.org (last visited 09/04/2014)
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behavior or be migrated to code in the target virtual reality
environment.

Both of the above approaches depend on the development of
models (although the multilevel nature of APEX also sup-
ports programming the virtual devices directly in the environ-
ment). This begs two questions. The first regards the avail-
ability of models for analysis, the second the extent to each
the models faithfully capture the relevant features of the sys-
tem once developed, given the specific analysis being carried
out. This last issue impacts the validity of the analysis, and
what it means of the actual system once deployed.

Regarding the first issue, while Model Based User Interface
Development approaches (consider, for example, [3]) advo-
cate the use of models, there are concerns about the quality
(from a user’s perspective) of the user interfaces developed
in this fashion (mainly when automatic refinement of models
into code is considered). Indeed, human-centered design ap-
proaches typically advocate a process based on iterative pro-
totyping and testing [10]. Additionally, agile approaches fo-
cus much earlier on the production of code [11]. This means
that it is not guaranteed the models will necessarily be avail-
able for analysis.

When models are available, and especially when the genera-
tion of the system is not automated, the question arises of how
faithful a representation of the code the model is. This not
only is a problem due to the need to guarantee that the code
is correctly generated from the original model, but also to the
need to guarantee that both ends of the development process
(models and code) are kept synchronized. Indeed, a known
problem of model based software engineering is maintaining
the consistency between model and source code.

Considering the above, we have been exploring the use of
model based testing to directly analyze actual running appli-
cation [17]. Model based testing works by comparing the
prescribed behavior of a system (captured in a model – the
oracle), with the actual behavior of the system while running.
Task models were used to generate the oracle, as they describe
the intended use of the system. The possibility of introduc-
ing mutations in the task model was also explored, so that
deviation from the norm (for example, user errors) could be
considered during the analysis [2]. The need for an oracle,
however, means that a model is still needed to perform the
analysis.

CURRENT AND FUTURE WORK
While the approaches described above have proven able to
provide insights into the design and trustworthiness of inter-
active computing systems, the need for models presents a bar-
rier to adoption. Lighter-weight alternatives are needed when
the cost of the modelling step in not justifiable.

We have been exploring alternatives to reason about the qual-
ity of an interactive computing system directly from its im-
plementation. The goal is to better integrate the analysis with
development contexts more centered around the production
of code, such as some agile approaches or less structured de-
velopment processes, as is sometimes the case on Web and
mobile applications’ development.

One first approach was to use static analysis techniques to re-
verse engineer models from source code [7]. This allowed us,
not only to apply the model analysis techniques we already
had available on the outcome of the reverse engineering step,
but also to identify problems directly in the code during the
reverse engineering step itself. For example, user interface
components declared but never used. This type of approach,
however, is hard to generalize, which, especially in the case
of Web applications, becomes a problem given the multiplic-
ity of options regarding implementation technologies. It is
also not easy to apply when we consider adaptive or dynam-
ically generated user interfaces, as the concrete interface is
only known at run time, and typically not easy to deduce from
the source code alone.

More recently, we have started looking at alternative ap-
proaches to analyzing the quality of the implementation. One
direction explores the know how obtained with the reverse
engineering and model based testing work. It consists in ap-
plying hybrid analysis techniques to perform both direct anal-
ysis and reverse engineering [14]. The approach, targeted at
Web applications, combines dynamic exploration of the user
interface, with static analysis of the event listeners. This ap-
proach presents a number of benefits. Compared with dy-
namic analysis, it enables us to achieve better coverage of the
system’s state space during exploration, as well as a more de-
tailed model of the system. Compared with static analysis,
it enables us to significantly reduce generalization problems,
and problems with dynamically generated user interfaces, as
we analyze and extract code from the running application,
limiting the amount of static analysis to a minimum. Given
the distributed nature of Web applications, and to minimize
generalization problems, code instrumentation is used to sim-
ulate different responses from the business logic.

Another direction is exploring the idea of code smells [9]. A
code smell highlights some feature of the code that, while not
necessarily an error, might indicate a weakness in the sys-
tem’s implementation. Our ultimate goal is to apply the con-
cept to user interfaces analysis and define a set of usability
related smells. As a starting point we are looking at tradi-
tional WIMP interfaces, but we envisage that for different in-
teraction techniques different smells will have to be defined.
Thus far, we have found that while some of the smells we
have identified relate to the implementation’s quality, others
relate to the quality of the resulting user interface. How to
automate their analysis is still an open issue. For code related
smells, the know how on reverse engineering can once again
be leveraged. For user interface related smells, we intend to
explore which type of models might be needed (and possible
to obtain) in order to support their detection.

An alternative to attempting to avoid the need for models in
the analysis, is to improve their added value. If more value
can be obtained from the modelling process, and if its cost can
be lowered, then the cost of developing a model can be better
justified. APEX already points in that direction by making
models the basis for both formal verification and prototyping.
We are currently extending those ideas into IVY, exploring
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the feasibility of using MAL models to support the prototyp-
ing of the user interfaces in the style of [12].

A related but somewhat different role is performed by mod-
els’ animation. While a prototype helps validate the design
with users by presenting them with a version of the user in-
terface, which is derived from (and controlled by) the model,
an animation is intended to help in an initial validation of
whether the model is the intended one. This is achieved by
supporting direct interaction with the model itself. In the case
of APEX this is supported by CPN Tools. Regarding IVY,
however, model validation is currently carried out by explor-
ing the design through proving properties. This is an expen-
sive process that can be made more cost effective by support-
ing direct interaction with the model. Once some degree of
confidence about the model is achieved via animation, further
analysis can then be carried out through verification. Bring-
ing together model animation, formal verification and proto-
typing, all based in a single model will considerable raise the
cost effectiveness of building the model.

CONCLUSION
The pervasiveness of software makes us more and more de-
pendent on its quality. It is thus unfortunate that for the most
part the quality of the software being produced is still some-
what lacking. This is also true, and particularly relevant, of
interactive computing systems. If their development is to be
considered an engineering discipline, then we need methods
and tools to help us reason about, and predict, the quality of
systems from early in the design process.

This paper has provided a brief overview of the work we
have been carrying out under the generic umbrella of reason-
ing about, and ensuring the quality of, interactive computing
systems. The described techniques and tools should be seen
as an addition to the toolbox of already existing techniques
and tools available for interactive computing systems devel-
opment. Some ideas currently under development have also
been highlighted.
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ABSTRACT 

Semantic technologies, as advocated and used in the 

context of the Semantic Web, are increasingly seen not 

only as a pre-requisite for the automated processing of 

distributed data on the Web,  but also as a basis for new 

methods and tools for engineering interactive systems. In 

this position paper, we briefly review the state of the art 

related to visualizing and exploring semantic data, in 

particular Linked Open Data, as well as techniques for 

developing user interfaces for semantic data. We also 

refer to some of our own work in this field. Based on this 

overview, we present a range of open research issues that 

we organize around three paradigmatic concepts that 

might inform and guide future developments in this area. 

The three paradigms discussed in this paper are: 

constructive exploration, dynamic contextualization, and 

transparent integration of semantic data. These 

conceptual contributions together with the concrete 

developments described shall serve as input to a broader 

discussion of a roadmap for the future engineering of 

interactive systems. 

Keywords 

Semantic Web, visual exploration, context-adaptation, 

semantic widgets 

INTRODUCTION 

Since the first articulation of the vision of a Semantic 

Web (Berners-Lee et al., 2001), the amount of data on the 

Web represented with semantic techniques has increased 

enormously. In contrast to the conventional Web which 

links web pages as complete documents, the Semantic 

Web links data based on a uniform data model. This 

model consists of elementary statements in ‘subject-

predicate-object’ form, expressed with RDF, and uses 

shared vocabularies defined as ontologies by means of 

RDFS and OWL. Linking the individual statements 

results in single, huge data graph, which is often referred 

to as the Web of Data. 

Today, large amounts of semantic data are available 

openly on the Web, often automatically extracted from 

conventional information sources such as encyclopedias 

(e.g. DBPedia which is extracted from Wikipedia, 

geographical databases, bibliographies, product data and 

many others (for an overview see, e.g. Bizer et al.,2008). 

The LOD (Linking Open Data) initiative has invested 

considerable effort in interconnecting different datasets, 

resulting in the LOD Cloud which has meanwhile 

reached an enormous size. Beyond general public 

information sources, semantic techniques are also 

making their way into more specific application domains 

such as electronic commerce (e. g., Hepp, 2008) or 

corporate document management (e.g., in the current 

Microsoft Sharepoint). 

While the original objectives of semantic techniques 

were mainly directed at making Web information 

machine-processable, it is increasingly recognized that 

linked open data and other semantic data pools are 

valuable information sources that can be used 

interactively by end users. This creates a need for 

methods and tools that allow users to interact with 

Semantic Web data directly, rather than through a web 

application that integrates and delivers data in standard 

web pages. 

In contrast to conventional Web front ends, user 

interfaces and search tools for Semantic Web data can 

exploit the semantics of the underlying data structure, for 

instance, to let users explore the data under different 

perspectives and formulate more targeted and complex 

queries. The potential of interactively exploring semantic 

data has been demonstrated by a variety of tools that use 

the different semantic relations for browsing the data or 

for creating search facets that allow users to flexibly filter 

the data. Visual techniques for formulating complex 

queries have been developed, for instance, in prior work 

of ours (Heim, Ertl, & Ziegler, 2010; Heim et al., 2009). 

In addition to providing improved search and exploration 

capabilities, however, semantic representations can also 

enable users to construct their own views of a semantic 

data pool, which can either be used for exploring the data 

in some user-defined visual configuration or for 

presenting (and potentially editing) a more or less 

complex cut-out of the large RDF based data graph. 

Semantic techniques open up new approaches to end-user 

tailoring or even development of interactive applications. 

Due to the explicit and user-inspectable representation of 

semantic models in the form of ontologies, to which the 

(instance) data are directly linked, a range of new 

development methods and tools can be conceived which 

also have implications for the architecture of interactive 

systems. In this position paper, we describe some of the 

new conceptual aspects of engineering interactive 

systems based on semantic data which may change the 
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way interactive systems and user interfaces will be 

developed in the future. In the following, we first present 

a brief review of the state of the art and describe some of 

our own developments. We then discuss three lines of 

research in which we believe semantic techniques will 

have an impact on engineering interactive systems in the 

future. 

RELATED WORK 

A variety of tools have been developed in recent years 

that allow users to browse Semantic Web data directly. 

Well-known examples of Semantic Web Browsers 

include Tabulator (Berners-Lee et al., 2008), Parallax 

(Huynh & Karger, 2009), and Humboldt (Kobilarov & 

Dickinson, 2008). Different models and metaphors have 

been proposed which can roughly be subdivided into 

page-based and graph-based techniques. Page-based 

approaches show a resource as a single Web page with 

links representing the relations to other resources while 

graph-based approaches provide a visualization of the 

RDF graph directly. RDF data also lend themselves well 

to faceted browsing since related concepts can be used to 

filter the instance set of some target concept. This 

technique has been used in a number of systems in which 

facets were mainly represented as menus or links on 

pages showing the filtered results (as an example, see 

schraefel et al, 2005). 

In our own work, we have developed several tools for 

visualizing and exploring RDF data. Facet Graphs 

combine the benefits of graph-based RDF visualizations 

with facetted browsing and allow users to formulate 

complex facetted queries in a visual form (Heim et al. 

2010).  In this tool, a graph visualization was extended to 

contain set-valued nodes, showing all instances 

belonging to the concept represented by the node. This 

allows users to formulate complex queries by selecting 

filter attributes from adjacent as well as distant concepts. 

RelFinder is a visual tool for detecting so far unknown 

relationship or patterns. RelFinder (Heim et al. 2009) is 

a browser-based system that can take two or more 

elements of an RDF dataset as starting points for 

extracting the relations among those elements and 

visualizing them as a network that can further be 

manipulated and explored. A marketing manager, for 

example, could thus identify products of competitors in a 

certain product category, find out whether they were used 

for similar purposes, or check whether they use the same 

suppliers. RelFinder can therefore be regarded as an 

interactive knowledge discovery tool. 

While tools for browsing semantic data are typically 

generic and support the unconstrained exploration of the 

data, in many cases more domain- and application-

specific user interfaces are needed.  Several techniques 

have been proposed to (rapidly) develop UIs for semantic 

data, mostly with a focus on presentation. 

The Xenon project (Quan & Karger, 2005) is an example 

of an approach for transforming RDF data into 

presentations based on a stylesheets. Based on the 

concept of XML-Stylesheets (XSLT), the authors 

developed a RDF-based stylesheet language, which 

defines concepts for transforming RDF-data using lenses 

and views. The purpose of lenses is data selection from 

instances whereas views describe the visualization of 

data elements. Just like with XSLT it is possible to embed 

HTML markup directly into the stylesheet for generating 

HTML representations of the data. As a follow-up to 

Xenon, Fresnel (Pietriga et al., 2006) still uses lenses for 

selecting data but replaces the view concept by formats 

that define, for instance, whether the data selected should 

be presented as a link, an image or as text. 

OWL-PL (Brophy, 2010), is a further language for 

transforming RDF/OWL data into (X)HTML. The 

language is strongly inspired by XLST and has the main 

goal to provide a simple transformation language for 

semantic data. OWL-PL allows the combination of 

transformational and representational markup. The 

language defines stylesheets, which are connected to 

semantic data by using a stylesheet ontology. The 

ontology describes how specific RDF classes are related 

to stylesheet elements. With the introduction of LESS 

[ADD10], a complete workflow from creating and 

processing templates for semantic data up to sharing 

templates between users is described. The declarative 

template language LeTL (LESS template language) is 

specified as a Smarty based templating language. It can 

process and transform semantic data from RDF 

documents or data requested by SPARQL queries.  

Work in our group has also addressed techniques for 

facilitating the construction of frontends for semantic 

data. In (Stegemann et al., 2012), we describe X3S, a 

technique for composing presentations of semantic data 

that can be created by simple drag-and-drop actions. A 

recent development are semantic widgets which will be 

further described in the following section. 

RESEARCH CHALLENGES 

In the following, we describe selected areas which pose 

particular challenges for future research related to 

semantic data and engineering user interfaces. To 

characterize the challenges involved and to indicate 

possible directions, we group the issues around three 

principles which we also see as conceptual contributions 

to discussing future research directions: Constructive 

Exploration, Dynamic Contextualization and 

Transparent Integration of Semantic Data which will be 

discussed in the following sections. 

Constructive Exploration 

Semantic data sources, in particular linked open data, are 

represented by very large graph structures, typically 

comprising billions of individual statements (e.g. about 

30 billion triples in LOD in 2011). In contrast to the 

conventional Web where complete documents are 

retrieved, the situation is different for semantic data. 

Users searching and exploring the data need find suitable 

starting points for their exploration and need to exploit 

the semantic relations to link them to related information. 
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Making sense of the data often requires filtering or 

aggregating them from different perspectives to extract 

those parts of the data graph that are relevant to the 

question at hand. Essentially, this means that users must 

be provided with tools that allow them to construct 

individual, potentially complex views on the data that can 

be used for further exploration. Due to the close 

integration of searching, exploring and visualizing the 

data, we call this process “constructive exploration”. An 

example of this approach are the aforementioned 

FacetGraphs where users construct an arbitrarily 

complex graph of concept nodes that contain lists of 

instances of the respective concept. Items can then be 

filtered over direct or even indirect connections to other 

concepts, allowing the user to change (“pivot”) the 

direction of filtering or apply several filters 

simultaneously. 

We see this as an example of a much wider range of 

possibilities where users can compose and configure 

visualizations or user interfaces in general to suit their 

individual task and information needs with respect to 

semantic data resources. Future research will need to 

address suitable UI metaphors, interaction tools and 

implementation approaches to create such flexible and 

user-driven visual environments for exploring semantic 

data. 

Dynamic Contextualization 

In context-adaptive systems and user interfaces, there 

still exists a considerable gap between theoretical 

considerations and actual technical solutions. In one of 

the most frequently cited papers on context, Dey and 

Abowd (2000) argue that any information that 

characterizes the situation of some entity can be 

considered as context. However, concrete examples of 

adaptive systems mostly use a much more restricted 

view, restricting context to a priori defined factors such 

as location, time or the device used. Broad notions of 

context are hard to operationalize. To reduce these 

limitations, we argue that context-adaptivity should be 

considered as a process of dynamic contextualization in 

which the system offer means for determining relevant 

context on the fly when the decision about some 

adaptation is about to take place (Hussein et al. 2014). 

Semantic models and data can play an important role in 

achieving such dynamic contextualization processes. 

Dynamic contextualization can be operationalized by a 

process that comprises the following steps: 1. 

Representing long-term user information and knowledge 

about the domain and potential context factors as 

semantic models and data. 2. Sensing potentially relevant 

information about the user’s current state. 3. 

Dynamically identifying contextually relevant elements, 

e.g. querying the semantic database 4. Reasoning (for 

instance inferring recommendations) based on the 

extracted context. These four steps roughly correspond to 

a four layer model proposed in previous work of one of 

us (Haake et al., 2010), where a semantic model 

represents the knowledge base used for subsequent 

contextualization steps. In this framework, semantic 

models provide a solid and comprehensive basis for 

adapting UIs, using the reasoning mechanism most 

suitable for the current adaptation problem. 

While we have explored this approach successfully in 

relation to context-aware hybrid recommenders and 

consider it promising, there are still many open research 

issues. Open questions exist, in particular, with respect to 

processing and abstracting sensed context, as well as to 

integrating external, sensor-based context with user 

models that capture behaviour or preferences. Finally, 

suitable reasoning mechanisms as well as meaningful and 

usable adaptations are required . 

Transparent Integration of Semantic Data 

While interacting with semantic data directly offers many 

opportunities for the targeted retrieval or exploration of 

facts and relations, in many cases it is desirable to 

integrate semantic data with conventional Web content to 

create more dedicated, application-specific user 

interfaces. Although this has been the subject of some 

research, there are still obstacles that prevent developers 

from making use of this option. There are issues related 

to architectural aspects as well as to the tools and 

languages used for doing so. Furthermore, there are 

currently no tools that would be usable by end users for 

integrating semantic data, e. g., in low-threshold 

publishing tools such as blogs or wikis. 

To overcome some of these obstacles, we propose the 

concept of Semantic Widgets that shield users from the 

complexity of the RDF query language (SPARQL3) and 

facilitate the construction of Web applications that use 

and integrate semantic data. To realize the concept, we 

have been working on SemwidgJS (Stegemann & 

Ziegler, submitted), a JavaScript library for displaying 

Linked Open Data through Semantic Widgets. 

SemwidgJS can be integrated in almost any standard 

HTML webpage and handles the querying, processing 

and displaying of semantic data. While existing libraries 

sharing a similar goal only comprise widgets for 

information visualization purposes, SemwidgJS also 

features widgets for typical UI elements such as labels, 

links, and text input fields. To make querying semantic 

data easy, SemwidgJS supports its own simplified, path-

based query language – SemwidgQL which is used as an 

alternative to standard SPARQL. We envisage that by 

providing suitable tools, users can be enabled to define 

the queries handled by the widgets in a completely visual 

way, combining exploration of the data with the 

definition of (reusable) widgets that can be embedded in 

standard Web pages.  

Beyond this specific example, we see a range of research 

issues that need to be solved to bring semantic techniques 

closer into the hands of end users. In terms of 

architecture, server-side and client-side techniques need 

to be further investigated. SemwidgJS widgets, for 

example, are completely processed in the client, Web 
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authors therefore only need to include suitable widget 

mark-up in their HTML code without the need to have 

specific functionality available on the server side. 

Integrating semantic Web services in an easy, user-

definable manner is also an area where more research 

will be needed to move beyond presentation-oriented 

applications and to make mash-ups of Web content and 

semantic data fully interactive. Eventually, this 

requirement may change the overall architecture of 

interactive applications, possibly resulting in new 

solutions beyond current practices of service-oriented 

systems.  

CONCLUSIONS 

Semantic Web techniques offer a high potential for new 

UI styles and capabilities, and for changing the way 

interactive systems are designed and built. Yet, many 

research challenges still lie along this way. Paradigms 

and metaphors for interacting with semantic data, for 

instance must be further investigated to increase 

usability. More tightly integrating semantic user and 

context models could lead to more effective and 

transparent adaptations. Finally, we believe that semantic 

techniques could empower end users to define and 

compose (without programming) their own personalized 

applications and user interfaces. 
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ABSTRACT
We highlight the role of programming in the engineering of
interactive systems, in the long term perspective of creating
general theories of interaction to support engineers. We out-
line a research roadmap aimed at both providing designers
with appropriate programming languages and understanding
the nature of interactive programs.
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INTRODUCTION
For the computing industry and the world in general, this has
been the decade of interactive systems. Long announced by
researchers, natural user interfaces have reached the indus-
trial stage and found their way to our pockets and our bedside
tables. This has changed the computing industry by giving
a more central role to individual programmers and to design
professionals. This also has bolstered the public awareness
about software programming, with the popularization of sen-
tences such as “programming is the new literacy” or “program
or be programmed” [26].

However, there is a paradox: what makes computers so in-
teresting is their interactivity, and still the programming tech-
niques that are proposed to the eager masses are the old tech-
niques, invented for designing algorithms and not interaction!
This might create some disillusionment with computer sci-
ence, and we indeed are observing its first signs in engineer-
ing students. We contend not only that addressing this para-
dox is our responsibility, but that creating programming lan-
guages for interactivity would bring benefits to engineers.

In this article we discuss three statements and their conse-
quences for research on engineering interactive systems:

• engineers need general theories of interaction

• designing interactive systems is programming

• programming languages are user interfaces.

We elaborate on these statements and why they should be im-
portant to our research community, then we outline possible
areas of research aimed at exploring their consequences.

WE NEED GENERAL THEORIES OF INTERACTION
Engineering has been defined by the Engineers Council for
Professional Development, in the United States, as [1, em-
phasis ours]:

The creative application of scientific principles to design
or develop structures, machines, apparatus, or manufac-
turing processes [...] or to forecast their behaviour under
specific operating conditions [...].

Let us first note the central role of scientific principles in this
definition: engineers need scientific theories, and progress in
engineering is often triggered by theoretical progress. What
is less intuitive is the combination of roles assigned to engi-
neers: to design (with an emphasis on creativity) or to fore-
cast. We derive two lessons from this:

• designing is a major component of engineering

• scientific theories are used both to design and to forecast

Indeed, examples abound of theories that are used to both
design and forecast. Mechanical engineers use the same
concepts of forces and pressures to forecast the behavior of
bedrock and to design a bridge built on it. The same holds for
chemical engineering, for bio-engineering, and even for tra-
ditional software engineering. Theories of computation allow
to describe computation systems (even natural ones) and to
predict their behavior. Through programming languages de-
rived from them, they also allow to design computation soft-
ware and to forecast its behavior. What allows these theories
to support both design and forecast activities is their gener-
ality: they encompass all the relevant aspects of the system
being designed and its environment. We contend that this
should be an explicit goal in the field of interactive systems
too.

Engineering interactive systems involves, before designing
and developing a software system, the analysis of the human
and physical environment in which it will operate. This re-
quires the ability to model software, human cognition and
perception, activities and tasks, application domains, and
even physical interaction. Currently, there are specialized
theories for each of these, and we spend considerable efforts
developing empirical methods that help engineers combine

1

HCI Engineering 47



these theories. But this focus on methods should only last
as long as we feel compelled to teach separate theories in
our engineering courses. The ultimate goal should remain
the elicitation of general theories that encompass all these as-
pects, as attempted for instance by Palanque et al. when using
Petri nets to model the behavior of both the user and the soft-
ware [23].

DESIGNING INTERACTIVE SYSTEMS IS PROGRAMMING
Programs are a central concept in theories of computation,
and in the whole field of software engineering. At the oppo-
site, in the field of interactive software engineering they are
often relegated to the status of mere by-products. But pro-
grams are nevertheless a major part of interactive systems,
and any general theory of interaction will need to clarify their
status and the role of programming. This section aims at
demonstrating that the activity of designing interactive sys-
tems can be considered as programming.

Generalized programming
In the following, we consider programs as descriptions of the
behavior of an entity when an execution device runs them,
and programming as an act performed by a human to design
the description. It is possible to picture the activity of pro-
gramming as carried out by professionals trained in computer
science and software engineering, who write algorithms in
C, Java or C#. We contend that this picture is harmful to our
ability to support engineers who design or need to forecast the
behavior of interactive systems. Both the design of systems,
that is the definition of their structure and their behavior, and
the analysis of their environment are closer to programming
than it seems.

To start with, programming does not only consist in writing.
It also involves reading, understanding, checking, designing,
forecasting the behavior of code. It is an engineering activity,
and cannot be distinguished from the engineering of interac-
tive systems on purely methodological grounds.

Then programming has ceased to be a task reserved to com-
puter scientists and software engineers. More and more
graphical designers, web designers and communication pro-
fessionals learn programming languages for producing parts
of interactive systems [8, 21]. For them, programming is part
of their activity just like drawing sketches. Languages and
environments such as Processing [25] have been created ex-
plicitly for designers.

Programming should also not be restricted to the engineer-
ing of algorithms. When designing an interactive system,
a number of entities that must be analyzed or designed can
be modelled as programs. The most obvious is the interac-
tive behavior of visual components: it is now commonplace
that interaction designers program them, using whatever no-
tation is available to them. The same holds for animation,
and even for graphics themselves: sometimes, graphical de-
signers want to produce effects that are best described as pro-
grams [8]. Operational procedures, often present in safety
critical systems, are programs. Even user tasks are similar to
programs, as illustrated by the conceptual similitude between

CTT [20] operators and parallel programming languages con-
trol structures.

Programming algorithms, programming interaction
Overall, designing interactive systems and programming are
much closer than usually advertised. We suggest that the tra-
ditional view of programming is biased. Turing and the gen-
erations that came after him have created such a consistent
body of theories and programming languages that the the-
ory of computation is used ubiquitously for analyzing sys-
tems, for designing algorithms, and even as a natural sci-
ence [3]. This success sometimes obscures the existence
(even the prevalence!) of other kinds of programs.

In this context, two courses of actions are possible for re-
searchers. The first option is to design languages that help
user interface designers assimilate concepts from the theory
of computation. The second option, that we suggest is more
promising, would be to acknowledge the difference and de-
sign adequate languages and theories to support user inter-
face designers. Then, over the years, reaching the ability to
consider interactive programs, human procedures and tasks as
manifestations of the same theoretical principles could lead
to a more balanced situation, with two kinds of programs and
two bodies of knowledge: algorithms, and interaction.

In the rest of this paper we focus on the second option: how
can we design programming languages and theories for all ac-
tors of user interface design? We also abandon any distinction
between “user interface programming” and “programming in
general”, because in today’s computing industry most pro-
grammers are confronted to user interfaces. Therefore, we
choose to tackle the following question: how can we design
theories, notations, languages and tools that support future
programmers, those who will have various backgrounds and
will all build interactive software?

PROGRAMMING LANGUAGES ARE USER INTERFACES
Software programming is an act performed by a user through
a machine. As such, it is like any other computer-supported
activity and requires usable tools, i.e. tools that enable their
users to accomplish a task with a minimum amount of re-
sources and in a delightful way. A review and classification
of the usability requirements expected of interactive develop-
ment tools has been made in [16].

When thinking about supporting software programmers, inte-
grated development environments (IDE), user interface man-
agement systems (UIMS) and user interface builders are the
first tools that come to mind. But programming languages
play a more central role because they ultimately condition
how programmers think about programs. To analyze the
role of programming languages, and more generally, of any
notation, we use Norman’s theory of action [22] and study
three aspects of interaction with them: evaluation, conceptual
model and execution.

Evaluation
Programming languages allow programmers to express pro-
grams through a notation. Whether textual or so-called “vi-
sual”, notations employ various graphical “features”: texts,

2
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shapes, alignments, colors, arrows, etc, to encode informa-
tion. The representation of a program is called “the code”.

An implicit but important aspect of programming languages
is that they must support the production of readable code, for
oneself and for others [24]: “Programs must be written for
people to read, and only incidentally for machines to execute
[2]”. In this regard, the readbility of code is like the readbility
of any visual representation: the first step toward forming a
mental model and acting.

The graphical appearance of the code has been shown to have
an impact on understanding. For example, indentation length
has been experimentally shown to have an impact on the com-
prehension of code: 2- and 4-space indentation makes read-
ers better at understanding the code than 6-space indentation,
for both novice and expert readers [18]. More surprisingly,
Green et al. found that textual representations outperformed
LabView’s graphical representations for each and every sub-
ject [12].

Conceptual model
Interacting with a tool is more than just its look and feel. One
of the essential aspects is the underlying conceptual model,
that is an explanation, usually highly simplified, of how a sys-
tem works [22]. For example, the conceptual model of a file
system relies on the concepts of File and Directory and the
related operations. It can be represented either as icons, or as
lists of names in a command line user interface. Conceptual
models are considered essential to usability by HCI special-
ists: a badly designed conceptual model is often at the root of
poor usability.

Programming languages are no exception to this rule: they
can be analyzed as a visual representation that reflects an un-
derlying conceptual model. For example, LISP code with its
parentheses is one possible representation of the underlying
hierarchy of expressions. Another representation of the same
program would be a graphical tree that shows the hierarchy
in 2D.

A conceptual model shapes the way their users think about
their problem at hand and the ways to solve it. In the case
of programming languages, it must be usable enough to help
programmers think about, design, write and read programs.
The conceptual model of a programming language is often
derived from a general theory. Consequently, it does not only
support the production of code, but the analysis of programs
and their environment, to the extent of what the theory can de-
scribe. For example, the “functional” conceptual model[15]
is well-adapted to the description of computation, while the
“reactive” conceptual model is well-adapted to interactive be-
haviors. This brings us back to the aforementioned general
theory of interaction: to produce usable programming lan-
guages for interactive systems designers, theories that encom-
pass the appropriate concerns must be available.

Execution
When programming, execution consists in writing code or
modifying it. This involves actions such as creating enti-
ties and referring to existing entities. IDEs are often con-

sidered as instrumentation of these tasks, designed to make
programming with a given language more usable. For exam-
ple, refactoring tools in current IDEs such as Eclipse enable
programmers using functional or object-oriented languages
to efficiently modify the names of functions or object meth-
ods. But, prior to IDEs, the evolution of languages can also
be considered as a process to offer better support for these
actions. For example, method inheritance is a way to factor
common code in a single place, thus facilitating the evolution
of behavior in multiple parts of the code (“mass updating”
[13]). Similarly, aspects offer programmers the possibility to
express cross-cutting concerns in a single place.

Moreover, some of the properties associated to “good soft-
ware” can be related to usability concerns. For example, the
goal of modularity is related to action and interaction: it is
supposed to facilitate the maintenance of code since with
well-modularized software a modification of a component
performed by a programmer requires minimal adaptation and
rewriting on other components.

RESEARCH DIRECTIONS
Our three statements and their discussion can be translated in
a long term goal: provide interactive systems engineers with
usable languages and notations for designing, developing and
analyzing systems, grounded in theories that they can apply
to forecast their behavior. How can this be turned into practi-
cable research directions? The state of the art in the extended
field of user interface engineering, as well as the history of
traditional computer science, provide many possibilities. We
list a few here:

Eliciting functionality
Programming language designers have spent decades to iden-
tify the functions of programming languages that best support
traditional programmers, alone or in groups. Which of these
functions are relevant for interactive systems designers, what
requirements are not covered and how can they be addressed?
Some authors have started to address this question [8, 21, 16]
but this is only a start.

Conceptual unification
A number of concepts have been proposed to describe the
behavior of interactive systems. The design of program-
ming languages, as much as the design of theories, tradition-
ally requires that the relationships between concepts are de-
fined. This usually involves the definition of primitive con-
cepts from which other concepts are derived. Such unifica-
tion has been attempted in the past [5, 14] and should be pur-
sued, even if this implies reaching out to disciplines that are
currently alien to our field, including philosophy. The work
presented in [17] is an example in this direction.

Formal definition of concepts
Little effort is devoted in our domain to establish consensual
definitions of concepts such as task, activity, event, compo-
nent, interface, animation, etc. Actually, it would be diffi-
cult to negotiate any solid consensus without more formal
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candidate definitions: it is easy to agree with different in-
terpretations in mind. Progress toward more general theo-
ries could include collective work on formal definitions, us-
ing standard community tools such as workshops, incremen-
tal or controversial publications, and consensus statements.
For instance, the word “specification” has grown a particular
meaning in software engineering, sometimes very different
from its meanings in other engineering fields. Must we ad-
here to this idiomatic meaning and why? An article written
in French by one of the authors [6] has sparked verbal debate
about this, and it might be useful to have more structured de-
bates, anchored in activity analysis of engineering.

Designing language concepts
If we consider that interactive systems programming is not
well supported enough by existing programming languages,
we should design new ones: programming languages for pro-
fessional programmers and for interaction designers, nota-
tions for analysis, etc. There already are many research ef-
forts in this direction. However, the goal of producing general
theories that encompass all engineering activities requires
that the concepts used by all languages be compatible, even if
the notations are different. Our own research suggests that the
conceptual models of traditional programming languages are
not sufficient to fully describe interactions and that new, more
comprehensive and unifying models of execution should be
used instead. More research should be conducted to assess
this aspect of the usability of programming languages, in or-
der to identify the relevant properties and to design appropri-
ate evaluation methods.

Designing language notations
We have already started to study the design of language nota-
tions. We notably have analyzed and modeled the process of
perceiving a program using a framework based on the Semi-
otics of Graphics [9]. This work shows that code representa-
tion is not about aesthetics but performance, and should not
be an art [11] but a science following principles from visual
perception. It also suggests that there may be no substantial
difference in terms of graphical perception between textual
and visual languages. The Physics of Notations framework
focuses on the properties of notations [19]. It adresses nu-
merous aspects of graphical properties and defines several
principles for the design of notations e.g., semiotic clarity,
perceptual discriminability, semantic transparency, visual ex-
pressiveness, etc. In addition, designing a programming lan-
guage should use a “programmer-centered design” approach:
it should emphasize the act of designing representations tar-
geted at tasks meaningful for end-programmers, and not de-
signing the representation in isolation. Such work should be
of interest for software engineers who often use various UML
diagrams (another notation) to document their software.

Consolidating available results
A number of available results in user interface engineering
have limited impact or are only used as general guidelines
because they cannot be used directly by programmers and
designers: architecture patterns, language constructs imple-
mented in toolkits, dedicated algorithms, etc. A requirement
for the design of new languages should be that these results

can be checked against the proposed languages, so that they
can be reused more directly. Reciprocally, effort should be
spent on identifying available results and assessing against
the proposed designs. For instance we have carried out an
assessment of software adaptation against reactive program-
ming [17] and it would now be useful to determine how
architecture patterns proposed for plasticity translate in this
framework. As another example, we are working on how the
MDPC pattern [10] fits in an interaction-oriented language.
Interestingly, some of the available results currently are im-
plemented in operating systems [4, 7] and this is reminiscent
of the relationships that existed in the past between new lan-
guages and new operating systems.

CONCLUSION
In this article, we have highlighted the role of programming
in the engineering of interactive systems, in the long term per-
pective of creating general theories of interaction to support
engineers. We have outlined a research roadmap aimed at
both providing designers with appropriate programming lan-
guages and understanding the nature of interactive programs.

As researchers on engineering, one of our roles is to provide
engineers with better theoretical tools, including languages
and notations. As researchers on human-computer interac-
tion, we have tools and methods that no other scientific com-
munity has for designing new theories, languages and nota-
tions. What about eating our own dog food?
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