
Quality: a challenge for advanced user interfaces
Sophie Dupuy-Chessa

Univ. Grenoble Alpes, LIG
CNRS

41 rue des mathématiques
38400 Saint Martin d’Hères, France

Sophie.Dupuy@imag.fr

Gaëlle Calvary
Univ. Grenoble Alpes, LIG

CNRS
41 rue des mathématiques

38400 Saint Martin d’Hères, France
Gaelle.Calvary@imag.fr

ABSTRACT
In Human Computer Interaction, universal quality does
not exist. Despite all the design efforts, there will
always be users and situations the user interface (UI)
will not be suitable for. This is particularly true for
advanced UIs for which quality criteria are still ill-
defined. This paper addresses the engineering of UIs
from the end-user’s point of view: it does not address
the internal quality such as the software architecture. It
reviews ways for integrating quality all over the
development process and from different points of
view: 1) the quality intended by designers thanks to
flexibility and creativity in the design process as well
as verification; 2) the quality perceived by end-users
thanks to UI adaptation and self-explanation.

Keywords
Quality, Development process, Design time, Run time.

PROBLEM: THE MULTI FACES OF QUALITY
End-users often find problems while interacting with
advanced user interfaces (UIs). Questions about where
is an option on the mobile phone version of an
application, what is the gesture to accomplish a task, or
why did something happen in the UI naturally arise due
to the imperfect quality of the UI.
This problem of insufficient quality can be due to the
increasing difficulty of designing advanced UIs by
adding parameters like the devices, the location, the
user characteristics... As mentioned by [12], the
difficulty to design systems has been moved up. Even if
the designer intends to achieve a good quality level
(intended quality), he/she cannot foresee all these
problems and obstacles at design time because each
single user has his/her own understanding of the UI and
might be in specific situations. It becomes impossible
to provide support for all the users at design time for all
the situations they might be in.
But quality problems also exist because as the user is
not the designer, the user has a different understanding
of the UI. He/she can encounter different problems or
obstacles during the interaction process, which can
make him/her perceive a bad quality level.

These problems are graphically represented by a gulf
(figure 1) between the intended versus perceived
quality.

Fig. 1- Gulf of quality between intended and perceived
quality.
Moreover perceived and intended quality is not static
and can evolve with people, the context of use and the
system itself. So the research question is:
What can be an engineering approach to continuously
improve quality of advanced UIs?

MODELS: A UNIFYING APPROACH
As it is often the case in an engineering approach, we
propose to use models as the basis for engineering
quality. Models can serve as unifying approach that
bridge the gap between the designer’s and the end
user’s point of view:

• Models are created by developers along the
development process. They aim at achieving
the intended quality.

• Models created by developers can be reused to
increase the quality perceived by end-users.
They are “hyphens” between the intended and
perceived qualities.

RESEARCH AXES: INTENDED AND PERCEIVED
QUALITY
Considering the gulf of quality, we propose to structure
the research axes thanks to designers’ and end users’
points of view. We need to study the intended and
perceived quality.

Intended quality
Intended quality reflects the quality that the designer
would like to achieve. It is mainly related to design

time where design, but also quality verification
activities usually take place.

Quality by design: model-based approaches have been
investigated for long for generating UIs from models.
However, the resulting quality was rather limited: the
UIs were simply made of basic widgets (e.g., input
fields, radio buttons), far from supporting the advanced
features promoted in ambient intelligence. Recently,
creativity has been explored by models [10]: the point
is no more to generate UIs for end-users, but UIs for
developers as means for supporting the divergence and
convergence processes in creativity [9]. The UIs are
generated from a task model using different models
transformations. The developer selects the UIs or parts
of the UIs he/she really appreciates. Then genetic
mutations are processed to make the models
transformations evolve and thus give rise to new UIs.
Figure 2 presents examples of UIs automatically
produced for a Chat application. The UI variations
(structure, widget, layout, colour, etc.) are intended to
inspire the developer.

Fig. 2 – Examples of UIs generated by Magellan, a
genetic algorithm-based environment for fostering
developers’ creativity

Another possible approach to improve the intended
quality is to bring flexibility for developers so that to
comply with the different practices in UIs development.
Flexibility has been identified in the literature as one of
the main research goals of method engineering [1]. For
instance, [16] introduces flexibility in the design
process for adaptive UI in order to decrease the
threshold of use of models. We define three forms of
flexibility:

1. Variability as the possibility of choosing one
path in a set of equivalent variants. For
example, instead of creating concrete user
interfaces, they are generated from existing
UIs, saving considerable part of the effort to

be made for learning the CUI model and
(re)modeling the UIs.

2. Granularability as the ability of a process
model to support elements with different
granularities, e.g. with different languages
and/or quantities of details. We propose
various levels of details when configuring and
executing our tool for generating the domain
model from a database. Expert designers just
execute the tool whilst step by step
explanations are provided for novice
developers.

3. Completeness as the possibility of fulfilling or
not the proposed process; some activities
and/or artefacts are then optional or can be
replaced by a predefined result or product. For
instance, the activity "define the platforms
model" can be avoided; in this case, the
platform model can be replaced by “default”
models that the developer picks up in a
repository proposed by the process model.

Obviously, the UIs produced by such a flexible
development process cannot be "perfect". However
thanks to the process flexibility, designers and
developers can reuse parts of their know-how and
competencies, and are able to transfer some existing
components into the paradigm of models: this makes it
possible for them to create a first, albeit imperfect,
version of their UIs, that they can iteratively improve,
acquiring the needed competencies step by step.
But the solutions proposed are always limited; in
particular they do not consider the enactment of the
process, which is primordial when considering the need
of rapid evolution when designing advanced UIs.

Quality by verification: Design should consider the
verification of the intended quality. High quality of
user interfaces, which can be ensured by several ways.
For example, [13] proposes four ways of evaluation:
formally by some analysis techniques, automatically by
a computerized procedure, empirically by experiments
with users and heuristically by simply looking at the UI
and passing judgement according to one’s own opinion.
The automation of quality verification has been largely
studied in the UI literature, however the usual
techniques for UIs verification such as model checking
[3] or testing [4] must be adapted to advanced UIs.
Perceived quality
Perceived quality corresponds to the end users’ point of
view under the system quality. So it is related to the
runtime understanding of the system. At runtime, we
consider that quality can be improved by composing
existing UIs, by adapting UIs to their context of use or
by explaining UIs.

Quality by reuse: Software composition is said to be

one of the grand challenges for the coming years. In the
engineering of human computer interaction, this means
being capable of composing UIs from existing pieces of
software. It has been addressed for different software
development paradigms including models [11]. The
problem is to succeed in composing without impairing
the UI quality. As a matter of fact, composition can
introduce some inconsistencies or discontinuities in the
final UI.
Quality by adaptation: Plasticity refers to the capacity
of UIs to withstand the variations of the context of use
(user, platform, environment) while preserving user-
centered properties [5]. User-centered properties clearly
refer to the perceived quality. So to improve this
perception, UIs can be technically adapted in two main
manners: adaptation is either a remolding (e.g.,
replacing an image with a text) or a UI redistribution
among the set of available platforms (e.g., migrating
the inputs to a mobile device). Model driven adaptation

has been intensively studied given rise to a reference
framework [6]. To consider quality in this framework,
usability is introduced: usability criteria complement
transformations between models so as to choose an
adaptation among others [14].
To implement this approach, [15] proposes UsiComp,
an integrated and open framework which implements
the principles of Cameleon by allowing designers to
create models and to modify them at design time and at
runtime. For instance, Figure 3 shows the two different
UIs that are produced by UsiComp for two platforms, a
PC and a mobile phone. In the background, we can see
the UI adapted to the screen of the PC platform.
Among others, the original screen from the PC
platform has been split into two tabs due to the small
resolution of the mobile phone screen. The zoom
controller of the map widget has been removed as well.
With such adaptations, UIs are adapted to devices thus
providing usable UIs.

Figure	
 3.	
 Generated	
 UIs	
 from	
 the	
 same	
 task	
 model.	
 The	
 UI	
 in	
 the	
 background	
 has	
 been	
 generated	
 for	
 a	
 PC	
 screen	
 with	
 higher	
 resolution	
 than	
 the	
 UI	

for	
 the	
 mobile	
 phone	
 in	
 front	
 of	
 the	
 figure.

However it still remains a challenge to guarantee that
an adaptation has not impaired the perceived quality.
Moreover adaptation generally does not take into
account post-WIMP UIs.

Quality by repair: As universal quality is utopian,
end-users are those who are the best to improve their
UIs as soon as they grasp the purpose and design
rationale of each UI element. So an interesting

approach is to support end-users reprogramming thanks
to models [7]. This approach is not restricted to repair,
it can also be used for design. In this case, it introduces
new problems in quality by design as end-users become
designers.
A complementary approach can propose to provide
help about the UIs thanks to models: models created at
design time can be used at runtime to explain UIs. In
particular, these self explanatory UIs can provide the
end-users with the design rationale of the UI [8].
For instance, [8] presents a system that consists of
using the design models to compute questions and
answers at runtime to provide an help system (Figure
4). The design models are still those proposed by the
Cameleon reference framework.

Figure 4. Reducing the gap between intended quality
and perceived quality by model-based explanations.
The self-explanatory facilities generated with our
approach are responsible for:

• Generating the set of questions. We consider
those questions that the help system “knows”
how to answer by inspecting the underlying
models of the UI.

• Generating answers. Once the user asks a
question to the help system, the system needs
to compute an understandable explanation or
answer. This is done through the following
three steps:

o Selecting the Explanation Strategy. In
this phase the help system selects the
explanation strategy according to the
type of the question. For instance, a
question about “how” to realize a
task (e.g. how to choose packs when
selecting a car) is associated to a
strategy related to the task model.

o Inspecting the models. Each
explanation strategy inspects one or
more models to retrieve the elements
that have been defined for each
strategy. For instance, to answer a
“how” question, the strategy starts by

inspecting the task model. The task
related to the question is identified in
the task model. Then the elements of
the abstract UI mapped to the tasks
are identified. Finally the elements of
the concrete UI corresponding to the
elements of the abstract UI are
selected. Thanks to this chain of
mapping, it is possible to obtain the
final elements in the UI that can
provide help. For instance, for the
question “how to choose packs”, the
mapping between models allows the
system to retrieve the « Packs »
button in the UI.

o Composing the answer. Once all the
elements of the models have been
retrieved, the answer is composed
and prepared to be presented.

• Presenting the answer. The computed answer
is provided to the user in an understandable
way. For example, the system will propose to
users to “Use the Packs button” if they want to
choose a pack.

We conducted an experiment to evaluate the added
value of model-based self-explanations. It shows that
most of the users identify the help system as useful, in
particular the How and the Where questions. However
the study has also collected some interesting
suggestions. First, we identified other types of
questions (what is…, what if…) not explicitly
supported by our system. Secondly usability of the help
system, that was not our main concern, needs to be
improved to facilitate interaction to select questions
and to guide users thanks to the answer.
However they are limited to graphical UIs and there is
a clear need to increase models so as to provide
explanations about advanced UIs.

CONCLUSION

The multi-faces quality of advanced UIs requires
continuous amelioration. This challenge motivates
needs for co-evolution between actors and systems:
roles are unified between end users and developers; the
gap between design, run and evaluation times are
erased so as to improve quality at any time.

REFERENCES
1. Harmsen F., Brinkkemper S., and Oei J.,

Situational method engineering for informational
system project approaches, in Methods and
Associated Tools for the Information Systems Life
Cycle, 1994, p. 169‑ 194.

2. Nielsen, J., and Molich, R. Heuristic evaluation of
user interfaces. In Proceedings of the SIGCHI
conference on Human factors in computing
systems, ACM (1990), 249–256.

3. Paternò, F., and Santoro, C. Support for reasoning
about interactive systems through human-
computer interaction designers’ representations.
Comput. J. 46, 4 (2003), 340–357.

4. Hjort, U. H., Illum, J., Larsen, K. G., Petersen, M.
A., and Skou, A. Model-based gui testing using
Uppaal at Novo Nordisk. In FM 2009: Formal
Methods. Springer, 2009, 814–818

5. Thévenin D. and Coutaz J., Plasticity of user
interfaces: Framework and research agenda ; in
Proceedings of Interact’99, A. Sasse & C.
Johnson (réds), IFIP IOS Press Publ., 1999, 110–
117.

6. Calvary, G., Coutaz J., Thevenin, D., Limbourg,
Q., Bouillon, L., Vanderdonckt, J. A Unifying
Reference Framework for Multi-Target User
Interfaces, Interacting With Computers, Vol. 15/3,
2003, 289-308.

7. Sottet, J.-S., Calvary, G., Favre, J.-M., and
Coutaz, J. Megamodeling and metamodel-driven
engineering for plastic user interfaces: Mega-ui.
In Human-Centered Software Engineering. 2009,
173–200.

8. Garcia Frey, A., Calvary, G., Dupuy-Chessa, S.,
and Mandran, N. (2013). Model-based self-
explanatory UIs for free, but are they valuable? In
Proceedings of the 14th IFIP TC13 Conference on
Human-Computer Interaction (INTERACT’13), 2-
6 September 2013, Cape Town, South Africa.
Springer.

9. Buxton, B. Sketching User Experiences: Getting
the Design Right and the Right Design, Morgan
Kaufmann Publishers Inc. San Francisco, CA,
USA, 2007

10. Masson, D., Demeure, A., Calvary, G. Magellan,
an Evolutionary System to Foster User Interface
Design Creativity, Proceedings of the second
ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS 2010),
ACM Press, Berlin, pp 87-92

11. Gabillon, Y., Petit, M., Calvary, G., Fiorino, H.
Automated planning for User Interface
Composition, 2nd SEMAIS Workshop, IUI
conférence, Feb. 2011, Palo Alto, USA

12. Palen, L. Beyond the Handset: Designing for
Wireless Communications usability, ACM
Transactions on Computer-Human Interaction,
9(2), pp. 125-151, june 2002.

13. Nielsen,	
 J.,	
 and	
 Molich,	
 R.	
 Heuristic	
 evaluation	

of	
 user	
 interfaces.	
 In	
 Proceedings	
 of	
 the	
 SIGCHI	

conference	
 on	
 Human	
 factors	
 in	
 computing	

systems,	
 ACM	
 (1990),	
 249–256.	

14. Sottet, J.-S., Calvary, G., Coutaz, J., and Favre, J.-
M. A model-driven engineering approach for the
usability of plastic user interfaces. In Proc. of EIS
’07, Springer-Verlag, 2008, 140–157.

15. Garcia-Frey A., Ceret E., Dupuy-Chessa S.,
Calvary G., and Gabillon Y. UsiComp: an
extensible model- driven composer. EICS, (2012),
263–268.

16. Céret E., Calvary G., Dupuy-Chessa S.,
Flexibility in MDE for scaling up from simple
applications to real case studies: illustration on a
Nuclear Power Plant, 25ème conférence
francophone sur l'Interaction Homme-Machine,
IHM'13, Bordeaux, France, 2013.

