
Suggestions for an EICS Roadmap
Anke Dittmar and Peter Forbrig

Dept. of Computer Science
University of Rostock

A.-Einstein-Str. 22
D-18051 Rostock, Germany

[anke.dittmar|peter.forbrig]@uni-rostock.de

ABSTRACT
The position paper considers three methodological
challenges for Engineering Interactive Computing Systems
(EICS): 1) better integration of design theories and
practices from HCI and related fields into software
engineering practices, 2) novel concepts to overcome
limitations due to the separation of the user interface part
and the application core of interactive systems, 3) advanced
methods and tools for developing domain and user-specific
interactive systems. It is suggested to create an EICS
roadmap as result of the workshop.

ACM Classification Keywords
H.5 Information Interfaces and Presentation (e.g., HCI),
H.1.2 User/Machine Systems, D.2.2 Design Tools and
Techniques, D.2.10 Design, D.2.11 Software Architectures

INTRODUCTION
As the name would suggest, EICS is about providing
methods, techniques, and tools to systematically develop
interactive computing systems (ICS) of high quality. Yet,
Ann Blandford asked in her keynote at EICS’2013 what
engineering for interactive computing systems is. She
pointed out that standard development practices for
interactive systems such as iterative design are not
particularly assigned to EICS and that the community needs
to develop and maintain a better shared understanding of
the nature, value and role of EICS to avoid becoming
narrow and irrelevant [3].

‘Traditionally’, EICS approaches apply knowledge from
computer science, software engineering (SE), and human-
computer interaction (HCI) to design, implement, and
reason about ICS and, in particular, user interfaces. Topics
that are specifically addressed by EICS related conferences
include ICS modeling, task-based and model-based design
of user interfaces, formal methods for HCI, specification
formalisms for interaction techniques, design spaces for
organizing design parameters of advanced interaction
techniques, and software architecture models and tools for
designing, developing, and evaluating advanced user
interfaces. In the workshop call, EICS is described as a
“multidisciplinary endeavor positioned at the intersection of
HCI, software engineering, interaction design, and other
disciplines”. These disciplines all contribute in one or
another form to the “design, evaluation, and implemen-

tation of interactive computing systems for human use”1

Figure 1

and consider themselves also as multidisciplinary. For
example, SE is described as rooted in mathematics,
computer science, engineering, natural sciences and
humanities. Similar diagrams to the one in can be
found in almost every schoolbook about interaction design
or HCI. Each such diagram may be questioned in terms of
mentioned influences and depicted intersections (e.g.
Human Factors and HCI have no intersection in Figure 1).

Figure 1: The disciplines surrounding interaction design (from
[25]).

Figure 2 mentions, among many other disciplines, HCI and
interaction design on the design side and SE on the
technology side. EICS is not mentioned explicitly.

Before we further discuss the role of EICS and the
expectations on ICS engineers, we would like to review the
positioning of task analysis given in [5].

Excursus: Diaper’s Understanding of Task Analysis for
HCI
Dan Diaper considers in [5] HCI as “engineering discipline
rather than science because its goals are inherently practical

1 The quote is an essential part of the definition of HCI as
discipline (see, e.g., http://hcibib.org/).

and involve satisfying design criteria.” He suggests “that
the historical division between HCI and software
engineering is unfortune, as both study the same sort of
systems for similar purposes.” The difference between HCI
and SE is “merely one of emphasis, with SE focusing more
on software and HCI more on people” [5]. Diaper
distinguishes between a narrow view on HCI focusing on
the user-computer interface and a broad view on HCI
considering “everything to do with people and computers”
[5]. The latter view also includes the functionality of
software systems because it affects the allocation of
functions and the division of labor profoundly. Diaper
thinks that task analysis (TA) is at the core of HCI and has
to be better integrated into SE because software engineers
and system analysts often do TA implicitly and poorly.

Figure 2: Disciplines Contributing to Interactive Systems
Design (from [1]).

There may be few people who consider HCI as engineering
discipline, and there may be people who do not see TA at
the core of HCI. One may agree or disagree with Diaper’s
views, but he points out some important issues. First, when
it comes to the development of ICS, a fusion of various
research fields is needed. Second, while each discipline
comes with its own practices, attitudes, and interrelations,
their focus of research and some of the divisions have also
to be explained historically. Third, ICS are more than their
user-computer interfaces. And a last point should be
mentioned here. For Diaper, design is “a goal-directed
activity involving deliberate changes intended to improve
the current world.” Models of the current and of envisaged
worlds are required in this process to develop and to
implement ideas of change [5].

METHODOLOGICAL CHALLENGES FOR EICS
EICS should contribute to a more effective integration of
SE approaches and of approaches from HCI, interaction
design, and other fields. Engineering user interfaces or
novel interaction techniques is one important area of EICS,
but it only covers the above mentioned narrow view on
HCI. EICS conference topics such as requirements
engineering and software architectures for interactive
systems, integrating interaction design into the software
development process, and engineering user experience
better reflect the broader view on HCI.

What should be expected from ICS engineers? They need to
acquire profound background knowledge in HCI and
related fields which they are able to apply in engineering
user interfaces. They also must be able to convey HCI
related problems to other software developers and SE
related problems to interaction designers and HCI experts
so that these problems can be tackled in a holistic way.

In the remainder of this position paper, we discuss a better
integration of design theories and practices into SE
practices and consider the role of external design
representations in this process. In addition, two other
methodological challenges are mentioned that could be part
of an EICS roadmap.

– Novel concepts to overcome limitations due to the
separation of the user interface part and the application
core of interactive systems.

– Advanced methods and tools for developing domain and
user-specific ICS.

Integration of Design Theories and Practices into
Software Engineering Practices
Gould and Lewis are among the first exponents of user-
centred design ideas. In a paper published 1985, they claim
the need for an early focus on users and tasks, empirical
measurement, iterative design and prototyping, and
integrated usability design [15]. Until now these ideas are
not fully integrated into SE practices. In [21], SE is
characterised as “both a creative and a step-by-step process,
often involving many people producing many different
kinds of products”. However, existing SE methods and
recommended intermediate products of software projects
reveal that the focus in SE is still to a large extent on
functional aspects of software systems and on problem
solving. Even requirements documents contain in most
cases only the requirements on the software system under
development, but rarely models of the current world or
descriptions of other aspects of the envisaged world than
the technical system (see the previous section).

Since the 1990ies, HCI puts more emphasis on design
practices and theories (and interaction design developed as
an own discipline). We are familiar with the main ideas of
scenario-based design [24], participatory design, contextual
design [2], and design rationale [19]. We know theoretical

frameworks and concepts such as distributed cognition [16]
and situated action [27] and know about their consequences
on design. The interplay between problem setting and
problem solving and the role of external design represen-
tations are better understood [22,26,12]. However, SE
practices are not fully integrated into the above mentioned
design approaches. In [11], Dix et al. state, for example,
that “the ideal model of iterative design, in which a rapid
prototype is designed, evaluated and modified until the best
possible design is achieved… is appealing” but that it is
also important to be able to overcome bad initial design
decisions or to understand the reasons behind usability
problems and not just detect the symptoms. The authors
recommend using iterative design “in conjunction with
other, more principled approaches to interactive system
design” (see a discussion in [8]).

We see one important role of EICS in bridging the gap
between SE practices and design practices and theories
from HCI and interaction design. Our own contributions are
presented in [7,8,9,10]. For example, a lightweight use of
formal methods is suggested in [9,10] to integrate
evolutionary and exploratory prototyping of interactive
systems in a systematic way. Evolutionary prototyping is
especially recommended in SE when requirements of an
application cannot be fully understood in advance [4].

Figure 3: Overview of the model-guided prototyping approach
suggested in [9,10].

Figure 3 illustrates the overall approach. The white arrows
and the boxes indicate the evolution of the prototypical
implementation over time. This prototype has to be
deliberately underdesigned with respect to design issues
where a clearer understanding of the problem and possible
solutions needs to be obtained. In each iteration step,
selected open design questions are explored by the
development of alternative solutions to extend the
evolutionary prototype. A technique called parallel model-
guided prototyping is applied to develop these ‘throw-away
extensions’ and to allow their assessment with both
analytical and empirical means. Models of the current and
envisaged world guide and constrain this process. In this
way, an intertwined problem setting and problem solving is
supported (see [9,10] for more details).

Co-Evolution of Different Design Representations
Although it is unquestioned by all contributing disciplines
that in interactive systems design different kinds of design
representations (models) are needed, their effective co-
evolution and coupling remains problematic. In [23],
Robinson and Bannon show effects of using representations
of work (see also Figure 4). They point out that such
models pass through different groups and are used for
different purposes (ontological drift). While analysts create
and use descriptions of work to understand their nature and
to redesign it, software developers are interested in deriving
ICS specifications from such models, which when
implemented become prescriptions for work (flip-over
effect).

Figure 4: Effects of using representations of work in the design
process of ICS [23].

The position of EICS is depicted in Figure 4. Models of
users, tasks, context of use etc. are applied to create, refine,
test, assess, and validate system specifications. In [6,7], we
argue that task-based design approaches in EICS often gear
task models towards system specifications. Resulting
negative effects are discussed, e.g., in [23,27]. However,
ICS engineers should be familiar with a broad range of
design representation and their possible interpretations to be
able to mediate between the different stakeholders and their
interests, especially between software engineers and HCI
experts, interaction designers, and users2

2 General limitations of notations and models are well revealed in
[

.

17] quoting Ferguson: „In a wonderful book about mechanical
and structural engineering, Eugene Ferguson complains that
many engineering disasters have happened because modern
engineers have been taught to pay too much attention to
calculation and formal analysis of structures and too little to the
physical reality of the world of which those structures are a part…
In software engineering… we do pay a great deal of attention to
techniques that are essentially notational, leaving us – like the
engineers whose education Ferguson is criticising – paying too
little attention to the incalculable complexity of engineering
practice in the real world. Requirements are in the real world, not

ICS are More Than User Interfaces
Separating the user interface from the remainder of the
application is now standard practice in developing
interactive systems [18]. While many EICS approaches
focus on user interface design (and challenges of distributed
UIs, multimodal UIs, the growing variety of devices and
interaction techniques… may have reinforced this trend), it
is still a second-class issue in SE. Although a separation has
many advantages, the development of the user interface and
the functional core of an interactive system cannot be
approached in a fully isolated way because certain usability
concerns have to be considered already in the software
architecture. Cancellation is a well-known example of an
important usability feature which is often poorly supported
in applications [18]. John et al. propose usability-supporting
architectural patterns as a solution and as a means to
educate software architects ([18], see also [13]). Such
patterns describe the usability context (situation and
potential usability benefits) and the problem (forces exerted
by the environment and task, by human desires and
capabilities, and by the state of the software system). In a
pattern description, it is distinguished between a general
solution in terms of general responsibilities that resolve
above mentioned forces, and a specific solution that also
takes into account the forces from prior overarching design
decisions in a specific project context [18].

The separation of the user interface part and the application
core is even more problematic for systems supporting a
flexible allocation of functions, for adaptive systems, or for
systems that are developed in an evolutionary way. Novel
concepts to overcome limitations of this separation have to
be developed.

Methods and Tools for Domain and User-Specific ICS
EICS-conference topics also include:
– Domain-specific languages for interactive systems,
– End-user development of interactive systems,
– User interface software and technologies for ambient

assisted living,
– Engineering complex interactive systems (e.g., large

datasets, large communities, enterprise systems).
This list indicates a third methodological, and perhaps also
practical challenge. EICS approaches should demonstrate
their applicability to specific domains and user groups.

EXPECTATIONS ON THE WORKSHOP
Roadmaps support the orientation of a field by giving an
overview and highlighting open research issues. Good
examples are presented in [14,20]. At the workshop, we
would like to develop a shared view on an EICS roadmap.
We think that it would be great to collaboratively create a

in the machine. We must focus on them directly, and describe them
conscientiously”.

‘roadmap-paper’ after the workshop (which perhaps could
be published in the EICS proceedings?).

CONCLUSIONS
The paper has shown that diverse disciplines contribute to
the design of interactive computing systems. It has
particularly discussed the role EICS can play in bridging SE
and HCI (and related fields). EICS will be successful if it
becomes irrelevant or a true sub-field of HCI and/or SE.

REFERENCES
1. Benyon, D., Turner, P., and Turner, S. Designing

interactive systems: people, activities, contexts,
technologies. Addison-Wesley (2005).

2. Beyer, H., Holtzblatt, K.: Contextual Design – Defining
Customer-Centered Systems. Morgan Kaufmann
Publishers (1998).

3. Blandford, A. Engineering works: what is (and is not)
engineering for interactive computer systems? In Proc.
EICS '13. ACM (2013), 285-286.

4. Davis, A.M. Operational Prototyping: A New Develop-
ment Approach. IEEE Softw. 9(5):70–78 (1992).

5. Diaper, D. Understanding Task Analysis for Human-
Computer Interaction. In: Diaper, D., Stanton, N.A.
(eds.): The handbook of task analysis for human-
computer interaction. Lawrence Erlbaum Associates
(2004).

6. Dittmar, A., Forbrig, P.: Task-based design revisited. In
Proc. of EICS '09 (2009). 111-116.

7. Dittmar, A., Harrison, M.D. Representations for an
iterative resource-based design approach. In: Proc.
EICS '10 (2010), 135-144.

8. Dittmar, A., and Forbrig, P. Selective Modeling to
Support Task Migratability of Interactive Artifacts. In
INTERACT (3), vol. 6948 of LNCS, Springer (2011),
571–588.

9. Dittmar, A. and Piehler, S. A constructive approach for
design space exploration. In Proc. EICS '13. ACM
(2103), 49-58.

10. Dittmar, A., and Schachtschneider, R. Lightweight
Interaction Modeling in Evolutionary Prototyping. In
Proc. of FMIS workshop at EICS’13 (2013).

11. Dix, A., Finlay, J.E., Abowd, G.D., Beale, B. Human-
Computer Interaction (3rd Edition). Prentice-Hall
(2003).

12. Dix, A., and Gongora, L. Externalisation and design. In
Proc. of DESIRE ’11, ACM (2011), 31–42.

13. 'Engineering for HCI: Upfront effort, downstream pay-
back': http://www.youtube.com/watch?v=gxiA4JTS9P8,
at CHI 2013.

14. Garlan, D. Software architecture: a roadmap. In Proc. of
ICSE '00 (2000), 91-101.

http://www.youtube.com/watch?v=gxiA4JTS9P8�

15. Gould, J.D., Lewis, C. Designing for usability: key
principles and what users think. Communications of the
ACM 28(3), (1985), 300-311.

16. Hollan, J., Hutchins, E., and Kirsh, D. 2000. Distributed
cognition: toward a new foundation for human-
computer interaction research. ACM Trans. Comput.-
Hum. Interact. 7, 2 (Jun. 2000), 174-196.

17. Jackson, M.: A Discipline of Description. In Proc.
CEIRE98, Special Issue of Requirements Engineering,
Vol. 3(2) (1998), 73-78.

18. John, B.E., Bass, L., Sanchez-Segura, M-I., and Adams,
R.J. Bringing usability concerns to the design of
software architecture. In Proc. EHCI-DSVIS'04,
Springer (2004), 1-19.

19. Moran, T., and Carroll, J. (eds.) Design Rationale:
Concepts, Techniques, and Use, Lawrence Erlbaum
Associates, Inc. (1996).

20. Nuseibeh, B., and Easterbrook, S. Requirements
engineering: a roadmap. In Proc. of ICSE'00. ACM
(2000), 35-46.

21. Pfleeger, S.L. Software Engineering: Theory and
Practice, 2nd Edition, Prentice Hall (2001).

22. Rittel, H. W. J., and Webber, M. M. Dilemmas in a
General Theory of Planning. Policy Sciences 4 (1973),
155–169.

23. Robinson, M., and Bannon, L. Questioning represent-
tations. In Proc. of the ECSCW´91 (1991), 219-233.

24. Rosson, M.B., and Carroll, J.M. Usability Engineering –
Scenario-Based Development of Human-Computer
Interaction. Morgan Kaufmann Publishers (2002)

25. Saffer, D. Designing for Interaction. New Riders (2009).
26. Schön, D. The reflective practitioner: How professionals

think in action. New York, Basic Books (1983).
27. Suchman, L. Plans and Situated Actions: The Problem

of Human Machine Interaction. Cambridge University
Press (1987).

	Suggestions for an EICS Roadmap
	ABSTRACT
	ACM Classification Keywords

	INTRODUCTION
	Excursus: Diaper’s Understanding of Task Analysis for HCI

	Methodological CHALLENGES FOR EICS
	Integration of Design Theories and Practices into Software Engineering Practices
	Co-Evolution of Different Design Representations

	ICS are More Than User Interfaces
	Methods and Tools for Domain and User-Specific ICS

	Expectations on the workshop
	CONCLUSIONS
	REFERENCES

