
High assurance interactive computing systems

José Creissac Campos
Departamento de Informática, Universidade do Minho & HASLab / INESC TEC

Braga, Portugal
jose.campos@di.uminho.pt

ABSTRACT
If interactive computing systems development is to be con-
sidered an engineering discipline, we need methods and tools
to help us reason about and predict the quality of systems,
from early in the design process. This paper provides a brief
overview of work we have been carrying out in the general
area of evaluating and ensuring the quality of interactive com-
puting systems. Some of the work currently being carried
out is also discussed. Discussed approaches range from the
formal verification of user interface models through model
checking, to the reverse engineering and model based testing
of implemented interactive computing systems.

INTRODUCTION
Software has become present in all aspects of our lives, from
safety critical applications, such as medical devices and the
cars we drive, to social networks and games running on our
phones. As the losses and disruption caused by software fail-
ures rise in severity, so does the need to guarantee that soft-
ware will function correctly. This is a particular challenge
for interactive computing systems, given not only the pres-
ence of the human factor, which must be considered during
the analysis, but also the continuous evolution of interaction
and implementation technologies, which make it difficult to
asses, a priori, the quality of a system at development stages.
Nevertheless, if the development of user interfaces is to be an
engineering discipline, it must have techniques and tools to
enable this analysis during development so that quality can
be measured and predicted.

This paper briefly describes work that we have been carrying
out to support the analysis of interactive computing systems.
Building on that work it then outlines our views on some fu-
ture lines of research. The rational behind the proposals for
future work is that we need techniques and tools that better
fit the typical development process of interactive computing
systems. That is to say, techniques and tools that enable us to
analyse the systems as they are developed. To achieve this we
need means of leveraging, not only the analysis of any models
that might have been produced during development, but also
of the source code produced.

PREVIOUS WORK
One major goal of our work is to support the exhaustive, sys-
tematic and, and much as possible, automated analysis of in-
teractive commuting systems. With this aim as the backdrop,
a number of research direction have been pursued and are now
discussed. A common trait of all the approaches is the focus
on the system. That is, the main requirement is that either
a model of the system, or the actual system, is available for
analysis. An alternative approach, not explored here, would
be to focus on cognitive models of the user (see, for example,
ACT-R [1] or PUM [19]).

In order to support the systematic and exhaustive analysis
of user interfaces, we have developed the IVY workbench1

[6]. The tool supports the formal verification of interactive
computing systems using model checking [8]. It aims to
cater for the full cycle of analysis, from modelling to inter-
pretation of the verification results. Models are expressed
in a domain specific language (MAL interactors), and prop-
erties for verification in Computational Tree Logic (CTL)
[8]. IVY has been applied to a number of different systems,
mostly in safety critical domains (for example, medical [5]
and aerospace [18]). How best to fold considerations about
the user into the analysis has been a recurring concern, and
is typically done by making explicit assumptions about how
the user will react to the user interface [4]. The goal being to
guarantee that only cognitively plausible behaviors are con-
sidered during the verification.

IVY has proven suitable to analyze control panel and WIMP
style interfaces, but less so when considering larger inter-
action contexts, such as when considering ubiquitous com-
puting systems. With the APEX framework2 [16] we have
specifically targeted ubiquitous computing environments.
The framework combines a modelling tool (CPN Tools [13])
with a 3D application server (OpenSimulator3), in order to
combine formal verification and prototyping. On the one
hand, the models capture the behavior of active objects in the
environment (for example, sensors or public displays), and
are amenable to formal verification of their behavior [15]. On
the other hand, the use of the 3D application server for proto-
typing purposes enables an empirical assessment of the user
experience of the systems. The approach supports a multi-
level evolutionary prototyping approach, where simulate de-
vices can gradually be replaced by their physical counter-
parts. The simulation itself can resort to models of device

1http://ivy.di.uminho.pt (last visited 09/04/2014)
2http://ivy.di.uminho.pt/apex (last visited 09/04/2014)
3http://opensimulator.org (last visited 09/04/2014)

1

http://ivy.di.uminho.pt
http://ivy.di.uminho.pt/apex
http://opensimulator.org


behavior or be migrated to code in the target virtual reality
environment.

Both of the above approaches depend on the development of
models (although the multilevel nature of APEX also sup-
ports programming the virtual devices directly in the environ-
ment). This begs two questions. The first regards the avail-
ability of models for analysis, the second the extent to each
the models faithfully capture the relevant features of the sys-
tem once developed, given the specific analysis being carried
out. This last issue impacts the validity of the analysis, and
what it means of the actual system once deployed.

Regarding the first issue, while Model Based User Interface
Development approaches (consider, for example, [3]) advo-
cate the use of models, there are concerns about the quality
(from a user’s perspective) of the user interfaces developed
in this fashion (mainly when automatic refinement of models
into code is considered). Indeed, human-centered design ap-
proaches typically advocate a process based on iterative pro-
totyping and testing [10]. Additionally, agile approaches fo-
cus much earlier on the production of code [11]. This means
that it is not guaranteed the models will necessarily be avail-
able for analysis.

When models are available, and especially when the genera-
tion of the system is not automated, the question arises of how
faithful a representation of the code the model is. This not
only is a problem due to the need to guarantee that the code
is correctly generated from the original model, but also to the
need to guarantee that both ends of the development process
(models and code) are kept synchronized. Indeed, a known
problem of model based software engineering is maintaining
the consistency between model and source code.

Considering the above, we have been exploring the use of
model based testing to directly analyze actual running appli-
cation [17]. Model based testing works by comparing the
prescribed behavior of a system (captured in a model – the
oracle), with the actual behavior of the system while running.
Task models were used to generate the oracle, as they describe
the intended use of the system. The possibility of introduc-
ing mutations in the task model was also explored, so that
deviation from the norm (for example, user errors) could be
considered during the analysis [2]. The need for an oracle,
however, means that a model is still needed to perform the
analysis.

CURRENT AND FUTURE WORK
While the approaches described above have proven able to
provide insights into the design and trustworthiness of inter-
active computing systems, the need for models presents a bar-
rier to adoption. Lighter-weight alternatives are needed when
the cost of the modelling step in not justifiable.

We have been exploring alternatives to reason about the qual-
ity of an interactive computing system directly from its im-
plementation. The goal is to better integrate the analysis with
development contexts more centered around the production
of code, such as some agile approaches or less structured de-
velopment processes, as is sometimes the case on Web and
mobile applications’ development.

One first approach was to use static analysis techniques to re-
verse engineer models from source code [7]. This allowed us,
not only to apply the model analysis techniques we already
had available on the outcome of the reverse engineering step,
but also to identify problems directly in the code during the
reverse engineering step itself. For example, user interface
components declared but never used. This type of approach,
however, is hard to generalize, which, especially in the case
of Web applications, becomes a problem given the multiplic-
ity of options regarding implementation technologies. It is
also not easy to apply when we consider adaptive or dynam-
ically generated user interfaces, as the concrete interface is
only known at run time, and typically not easy to deduce from
the source code alone.

More recently, we have started looking at alternative ap-
proaches to analyzing the quality of the implementation. One
direction explores the know how obtained with the reverse
engineering and model based testing work. It consists in ap-
plying hybrid analysis techniques to perform both direct anal-
ysis and reverse engineering [14]. The approach, targeted at
Web applications, combines dynamic exploration of the user
interface, with static analysis of the event listeners. This ap-
proach presents a number of benefits. Compared with dy-
namic analysis, it enables us to achieve better coverage of the
system’s state space during exploration, as well as a more de-
tailed model of the system. Compared with static analysis,
it enables us to significantly reduce generalization problems,
and problems with dynamically generated user interfaces, as
we analyze and extract code from the running application,
limiting the amount of static analysis to a minimum. Given
the distributed nature of Web applications, and to minimize
generalization problems, code instrumentation is used to sim-
ulate different responses from the business logic.

Another direction is exploring the idea of code smells [9]. A
code smell highlights some feature of the code that, while not
necessarily an error, might indicate a weakness in the sys-
tem’s implementation. Our ultimate goal is to apply the con-
cept to user interfaces analysis and define a set of usability
related smells. As a starting point we are looking at tradi-
tional WIMP interfaces, but we envisage that for different in-
teraction techniques different smells will have to be defined.
Thus far, we have found that while some of the smells we
have identified relate to the implementation’s quality, others
relate to the quality of the resulting user interface. How to
automate their analysis is still an open issue. For code related
smells, the know how on reverse engineering can once again
be leveraged. For user interface related smells, we intend to
explore which type of models might be needed (and possible
to obtain) in order to support their detection.

An alternative to attempting to avoid the need for models in
the analysis, is to improve their added value. If more value
can be obtained from the modelling process, and if its cost can
be lowered, then the cost of developing a model can be better
justified. APEX already points in that direction by making
models the basis for both formal verification and prototyping.
We are currently extending those ideas into IVY, exploring

2



the feasibility of using MAL models to support the prototyp-
ing of the user interfaces in the style of [12].

A related but somewhat different role is performed by mod-
els’ animation. While a prototype helps validate the design
with users by presenting them with a version of the user in-
terface, which is derived from (and controlled by) the model,
an animation is intended to help in an initial validation of
whether the model is the intended one. This is achieved by
supporting direct interaction with the model itself. In the case
of APEX this is supported by CPN Tools. Regarding IVY,
however, model validation is currently carried out by explor-
ing the design through proving properties. This is an expen-
sive process that can be made more cost effective by support-
ing direct interaction with the model. Once some degree of
confidence about the model is achieved via animation, further
analysis can then be carried out through verification. Bring-
ing together model animation, formal verification and proto-
typing, all based in a single model will considerable raise the
cost effectiveness of building the model.

CONCLUSION
The pervasiveness of software makes us more and more de-
pendent on its quality. It is thus unfortunate that for the most
part the quality of the software being produced is still some-
what lacking. This is also true, and particularly relevant, of
interactive computing systems. If their development is to be
considered an engineering discipline, then we need methods
and tools to help us reason about, and predict, the quality of
systems from early in the design process.

This paper has provided a brief overview of the work we
have been carrying out under the generic umbrella of reason-
ing about, and ensuring the quality of, interactive computing
systems. The described techniques and tools should be seen
as an addition to the toolbox of already existing techniques
and tools available for interactive computing systems devel-
opment. Some ideas currently under development have also
been highlighted.

ACKNOWLEDGMENTS
IVY development is currently funded by the North Portugal
Regional Operational Programme (ON.2 – O Novo Norte),
under the National Strategic Reference Framework (NSRF),
through the European Regional Development Fund (ERDF),
and by national funds, through the Portuguese funding
agency, Fundação para a Ciência e a Tecnologia (FCT) within
the LATiCES project (NORTE-07-0124-FEDER-000062).

The APEX project is funded by ERDF - European Regional
Development Fund through the COMPETE Programme (op-
erational programme for competitiveness) and by National
Funds through the FCT - Fundação para a Ciência e a Tec-
nologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-015095.

Work on model based testing is funded by ERDF - European
Regional Development Fund through the COMPETE Pro-
gramme (operational programme for competitiveness) and by
National Funds through the FCT - Fundação para a Ciência e
a Tecnologia (Portuguese Foundation for Science and Tech-
nology) within project FCOMP-01-0124-FEDER-020554.

REFERENCES
1. Anderson, J. R. How can the human mind occur in the

physical universe? Oxford University Press, New York,
NY, USA, 2007.

2. Barbosa, A., Paiva, A. C. R., and Campos, J. C. Test
case generation from mutated task models. In
Proceedings of the 3rd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, F. Paternò,
K. Luyten, F. Maurer, P. Dewan, and C. Santoro, Eds.,
ACM (2011), 175–184. ISBN: 978-1-4503-0778-9.

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. A unifying reference
framework for multi-target user interfaces. Interacting
with Computers 15, 3 (2003), 289–308.

4. Campos, J., Doherty, G., and Harrison, M. Analysing
interactive devices based on information resource
constraints. International Journal of Human-Computer
Studies 72, 3 (March 2014), 284–297.

5. Campos, J., and Harrison, M. Modelling and analysing
the interactive behaviour of an infusion pump. Electronic
Communications of the EASST 45: Formal Methods for
Interactive Systems 2011 (2011). ISSN: 1863-2122.

6. Campos, J. C., and Harrison, M. D. Interaction
engineering using the ivy tool. In ACM Symposium on
Engineering Interactive Computing Systems (EICS
2009), ACM (New York, NY, USA, 2009), 35–44.

7. Campos, J. C., Saraiva, J., Silva, C., and Silva, J. C.
GUIsurfer: A reverse engineering framework for user
interface software. In Reverse Engineering - Recent
Advances and Applications, A. Telea, Ed. InTech, 2012,
ch. 2, 31–54.

8. Clarke, Jr., E. M., Grumberg, O., and Peled, D. A. Model
Checking. MIT Press, Cambridge, MA, USA, 1999.

9. Fowler, M. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

10. International Organization for Standardization. ISO
9241-210:2010 Ergonomics of human-system
interaction – part 210: Human-centred design for
interactive systems, 2010.

11. Memmel, T., Gundelsweiler, F., and Reiterer, H. Agile
human-centered software engineering. In Proceedings of
the 21st British HCI Group Annual Conference on
People and Computers: HCI...But Not As We Know It -
Volume 1, BCS-HCI ’07, British Computer Society
(Swinton, UK, UK, 2007), 167–175.

12. Oladimeji, P., Masci, P., Curzon, P., and Thimbleby, H.
PVSio-web: a tool for rapid prototyping device user
interfaces in PVS. In Proceedings of the 5th
International Workshop on Formal Methods for
Interactive Systems (FMIS 2013) (2013).

3



13. Ratzer, A. V., Wells, L., Lassen, H. M., Laursen, M.,
Qvortrup, J. F., Stissing, M. S., Westergaard, M.,
Christensen, S., and Jensen, K. CPN Tools for editing,
simulating, and analysing coloured Petri nets. In
Proceedings of the 24th international conference on
Applications and theory of Petri nets, ICATPN’03,
Springer-Verlag (Berlin, Heidelberg, 2003), 450–462.

14. Silva, C. E., and Campos, J. C. Combining static and
dynamic analysis for the reverse engineering of web
applications. In Proceedings of the 5th ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems (EICS 2013), P. Forbrig, P. Dewan, M. Harrison,
K. Luyten, C. Santoro, and S. Barbosa, Eds., ACM
(2013), 107–112.

15. Silva, J., Campos, J., and Harrison, M. Formal analysis
of ubiquitous computing environments through the
APEX framework. In ACM Symposium on Engineering
Interactive Computing Systems (EICS2012), ACM
(2012), 131–140.

16. Silva, J., Campos, J., and Harrison, M. Prototyping and
analysing ubiquitous computing environments using
multiple layers. International Journal of
Human-Computer Studies 72, 5 (May 2014), 488–506.

17. Silva, J. L., Campos, J. C., and Paiva, A. Model-based
user interface testing with spec explorer and
concurtasktrees. Electronic Notes in Theoretical
Computer Science 208: 2nd International Workshop on
Formal Methods for Interactive Systems (FMIS 2007)
(2008), 77–93.

18. Sousa, M., Campos, J., Alves, M., and Harrison, M.
Formal verification of safety-critical user interfaces: a
space system case study. In Formal Verification and
Modeling in Human Machine Systems: Papers from the
AAAI Spring Symposium, AAAI Press (2014), 62–67.

19. Young, R. M., Green, T. R. G., and Simon, T.
Programmable user models for predictive evaluation of
interface designs. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’89, ACM (New York, NY, USA, 1989), 15–19.

4


	Introduction
	Previous work
	Current and future work
	Conclusion
	Acknowledgments
	REFERENCES 

