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ABSTRACT
For various tasks in human-computer interaction, measures
of performance and emotion can be improved by adapting the
user interface to a user’s individual cognitive profile. Such
tasks can be found, for example, with eLearning, information
visualization, gaming, and human-computer collaboration in
reasoning or problem solving (e.g. in design). Relevant fac-
tors within a cognitive user profile may include separate cog-
nitive abilities, styles, and preferences, as well as personal
characteristics of memory or attention. The three chief chal-
lenges for a successful adaptation to a user’s cognitive profile
lie (1) in establishing which of these factors are relevant for a
given task-user pair, and to which extent, (2) in establishing
how, based on (1), adaption may best be performed, and (3)
in establishing a user’s individual values for these factors. All
three challenges possess aspects related to cognitive theory
and user modeling, as well as quite practical aspects related
to measuring a cognitive profile. This contribution will start
out by, in turn, addressing research questions and methods re-
lated to the challenges. A tiered structure for cognitive user
models will be subsequently sketched, through which adap-
tation can be based on parameters that are individualized to
varying degrees, depending on how much is known about a
user’s individual cognitive profile.
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INTRODUCTION
Some people are better than other people when it comes to
processing information given to them as pictures. Some peo-
ple outperform others when working with texts. The hypoth-
esis that there exist inter-individual differences in how people
process information on visual and verbal dimensions has been
the focus of research for decades. For learning, for example,
this has led to rather well established theories on different
cognitive abilities (i.e. relating to differences in what people
are capable of doing), different cognitive styles (i.e. relating
to differences of modality in how they process and represent
information), and different learning preferences (i.e. relating
to differences in how they prefer information to be presented
to them; cf. [21]). While eLearning studies into employing a

learner’s individual visual/verbal learning style for adapting
learning material have so far shown mixed effects of adapta-
tion on performance, they have shown clear benefits on in-
trinsic learner motivation [7, 2]. Would it not thus be useful
if an eLearning system knew about a user’s individual cog-
nitive abilities and styles, and if it used such knowledge to
automatically adapt how learning material gets presented?

A second example: A study by Keehner [17, 18] on effects
of conflicting visual/haptic cues on surgeons’ spatial scene
understanding during laparoscopic surgery demonstrated that
such effects depend on the surgeons’ individual spatial abil-
ities. One may conclude that, for surgeons with low gen-
eral spatial abilities, specific types of visual/haptic cue mis-
matches should be avoided, as these lead to a decreased
surgery-related scene understanding. Would it not be useful
if the laparoscopic system knew about a surgeon’s individ-
ual low spatial abilities and used such knowledge to prevent
certain cue mismatches from being presented?

A third example: For human reasoning with spatio-temporal
information (e.g., about distances/directions between objects
or places) the construction process of corresponding men-
tal scene models has been found to be frequently subject to
preferences (e.g. [19, 15]) in that, among all possible consis-
tent models, some are constructed more frequently (as well as
faster and easier) than others. Parsimony seems to play a role,
as models that reflect simple and typical configurations seem
to be preferred [12], which can be explained by simple and
commonly used mental processes [8]. Also, cultural left/right
biases may have an effect on preferences [15]. Let us assume
that we have a task that involves some spatial configuration
and that is either shared by a human and a computational sys-
tem, or in which a human user is assisted by a computational
system. Would it not be useful if the system knew about such
general human cognitive preferences, and adapted its actions
accordingly (e.g., by occasionally drawing the user’s atten-
tion also to some non-preferred model)?

It seems feasible to ground some of the adaptive behavior re-
quired for effectively addressing these examples onto general
and general-purpose models of cognition, such as ACT-R [1],
and to also, at least partially, evaluate adaptive behavior based
on these. The third example is likely to be amenable to such
an approach. For more specific cognitive faculties, use of
more specific models of cognition may be required (e.g., for
visuo-spatial reasoning, [8]), or of models which address spe-
cific classes of interactive tasks or domains (e.g., in-vehicle



user interfaces [25], web-based navigation [11], or the design
of built environments [6]). For purposes of either usability
engineering or testing of adaptive user interfaces, a few ap-
proaches exist that incorporate user models along with inter-
action models, with the user models targeting general or spe-
cific user groups (for the latter, e.g. [24]). Programmable user
models [28] are a good example of approaches which specifi-
cally try to bridge gaps of knowledge, methods, and philoso-
phy of approach between the cognitive scientist and the inter-
face designer, as they permit predictive interface evaluations
based on implemented psychological theories. Even if an in-
dividual user’s previous domain knowledge and the history or
context of use can often be modeled, when it comes to inter-
individual differences in cognitive processing, such as may
be expressed by cognitive abilities or styles, such models ad-
dress the average user of the targeted group. The models are
specific with respect to task, context, expertise, or group, but
are still general with respect to that group’s cognitive profile.

It should seem obvious that adaptive user interfaces which
will adequately address the first and the second example will
need to draw on more individual parameters than can be de-
rived from general models of cognition, even from task- or
group-specific ones. For the individual user, these param-
eters may be assessed through various test instruments (for
example, through tests of mental rotation or mental perspec-
tive taking performance for the respectively related, specific
cognitive spatial abilities). While definitions of the terms cog-
nitive abilities, styles, and preferences vary in the literature, I
will, for the current purpose, simply rely on the definitions by
Mayer and Massa [21] that were already provided in the first
paragraph above. As far as other terminology is concerned, I
will follow [23] and hold an adaptive system to be one that
automatically modifies some of its characteristics to better fit
a user’s needs. To keep the discussion short enough for these
few pages, the reader may simply envision such adaptive be-
havior to occur either on macro or micro levels (cf. the dis-
cussion by [20]) and either at design- or run-time.

Next, three chief challenges for user interface design con-
nected to such an individualized approach will be outlined.
The third section will sketch how a practical design compro-
mise may look like that mediates between the desire (or even,
need?) to know as much about a user’s cognitive profile as
possible and severe limitations in obtaining such knowledge.
The contribution will conclude with a short discussion.

THREE MAIN CHALLENGES
As it turns out, the first two examples above are still both of
a rather benevolent type for the interface designer interested
in how cognitive factors (i.e., abilities, style or preferences)
vary among his user base. This is because the cited stud-
ies all investigated relationships between certain tasks (learn-
ing, scene understanding) and specifically selected cognitive
abilities or styles (visual/verbal, spatial). When starting with
a given task and an individual user only, however, the first
question is which of the currently known, separate cognitive
factors may play a role in determining how that one user cog-
nitively tackles the task. This question is already much harder
to answer. It becomes harder yet when asking for specific

effect sizes and directions, let alone when asking for pos-
sible interactions between the factors. Hunt [14] compared
seven different cognitive skills; all of these may easily differ
between users and may influence user performance. These
were reading comprehension, vocabulary, grammar, mechan-
ical reasoning, quantitative skills, mathematics achievement,
and spatial reasoning. Some of these skills are more intercor-
related than others, with reading comprehension and spatial
reasoning forming the maximally unrelated pair. While this
list of skills serves to give a flavor of the variety one has to be
able to deal with, it is by no means exhaustive.

The first main, hard challenge is thus to establish which
factors are actually important for adaptive user interfaces for
each given class of tasks, and which are not. Given that
HCI specialists are usually no specialists in the cognitive sci-
ences, and vice-versa, this challenge is best addressed inter-
disciplinarily. It must certainly be largely addressed incre-
mentally. It seems that it will not be enough to simply iden-
tify relationships between cognitive factors on the one hand
and measures of task performance or satisfaction on the other,
but that one has to equally demonstrate that specific adapta-
tion strategies formed on top of discovered inter-individual
differences in users’ cognitive profiles will be effective. Very
likely, not all differences in profiles will be equally open to
on operationalization for adaptive user interfaces.

A related, hard problem is created by the fact that many
distributions of cognitive ability or style expressions are far
from being uniform. Usually, some style expressions will
be more frequently encountered than others within a targeted
user group. For example, with cognitive learning styles, a ma-
jority of learners will be visual (74%), especially when sam-
pling from populations in the natural sciences or engineering
(e.g., [9, 2]). This may be of quite some importance for sce-
narios in eLearning or eTutoring. When a user interacts with
an adaptive system, asking how often his cognitive profile is
to be encountered within a user population will likely seem to
be irrelevant to him. What likely will be relevant to him is that
any adaptation which is to occur based on information about
cognitive profiles will occur based on his specific profile. For
systematically investigating interrelationships between cog-
nitive factors and tasks, as well as for investigating how an
adaptation should best occur based on a given user profile,
frequencies of specific types of user profile are, however, far
from being irrelevant. When a user type is encountered too in-
frequently, achieving reliable statistical comparisons between
types may be difficult. As it seems to be no viable option to
exclude those users with rare profile types from using an in-
terface, or to at least decide to not try to provide them with
adaptive interface behavior, other approaches need to found.
A possible approach seems to lie in using mixed-method de-
signs that combine conclusions based on quantitative obser-
vations for the frequent types with conclusion based on qual-
itative observations for the more infrequent types.

Should one be in the lucky position to have already deter-
mined which cognitive factors effectively influence a given
user’s performance on a specific task, and in which ways, the
second main challenge lies in determining how adaptation



of the interface should best be performed. In the case of the
eLearning example above, this may be comparably straight-
forward, as one may choose the representational format of
learning material to correspond to a user’s individual cogni-
tive profile. However, even with the example, it seems unclear
if this would always be the best strategy. Depending on the
specific learning goals and the context, it may be more im-
portant to train learners to instead better cope with material
in formats that do not well match their cognitive profiles (see
e.g. [9] for a discussion of this point for inter-individual dif-
ferences of students’ learning styles). The question thus be-
comes one of either adapting to a profile, or against it. This
is particularly interesting in gaming applications, when sys-
tem adaptation can take the form of a computational player
either adapting to keep a human player in the game for as
long as possible (and to, e.g., maximize fun or engagement)
or to adapt to become a maximally strong adversary (see e.g.
[27] for an example and a discussion).

Choices of either adapting to or against a user’s individual
cognitive profile may be limited for purely practical reasons
for all sorts of asymmetric tasks which are not fully speci-
fied. Such tasks can be frequently encountered, for exam-
ple, in computer-assisted design: here, usually only a subset
of design requirements can be formally described (often, the
more technical requirements, such as e.g. with regard to ther-
mal insulation), while other requirements remain the exclu-
sive province of a human designer (often, those regarding an
aesthetical or a more holistic evaluation of the design). The
result is a setting of an asymmetric human-computer collab-
oration, with shared initiative, in which both parties need to
rather act as partners that observe, adapt to, and, ideally, an-
ticipate the other’s actions in order to be jointly effective [3].

Finally, the third chief challenge lies in making sure that
a user interface has enough information about an individual
user available to allow for an adequately precise establish-
ing of that user’s relevant cognitive profile. From a practical
point of view, this likely poses the hardest of the three chal-
lenges. While test instruments exist for many of the various
cognitive abilities and styles, administering them is often a
rather lengthy process that, what is even worse, is often tir-
ing and/or boring for the tested user. The same holds true
for many of the established instruments that assess individual
characteristics of a user’s memory and attention systems. The
best ways of measuring a user’s working memory capacity are
performance measures, that is, one tests how much one can
cram into the memory system. However, running at full load
will not only quickly tire a user out for further tests of cogni-
tive ability or style, but also for any main tests of potentially
adaptive systems that the HCI professional will be chiefly in-
terested in. It thus seems highly impracticable to measure
factors related a user’s cognitive profile separately and over
and over again for each task, interface, or tool. There will be
neither enough time, cognitive user (or researcher) resources,
or user motivation for such an endeavor.

In addition, individual expressions of abilities or style will
be only largely indicative of a user’s general traits in cog-
nitive processing, though not necessarily for life and in all

situations. Measurements and the factors that they reflect are
each expected to vary to different degrees depending on the
task or context (e.g. for learning styles, see [2]). Depend-
ing on the task at hand, it may be necessary to dynamically
assess additional information about the individual user, for
instance, to infer information about his current mental state
(e.g., regarding current foci of attention). Different measure-
ments of psychophysical parameters may be used to further
inform, individualize, and situate more general cognitive user
models, such as through parameters derived from gaze (e.g.
[10], [4]), EEG, or skin conductance, etc. Where some of
the criticism above was directed against cognitive user mod-
els that were too general (i.e., not individualized enough), the
problem here is that information obtained about a user’s in-
dividual cognitive profile via the established test instruments
may be too general (i.e., not situation- or context-dependent
enough) to serve as the sole base from which to derive param-
eters governing adaptive interface behavior. For example, for
tasks or games that involve problem solving, one can assume
reliable information about a user’s current strategies and foci
to likely be at least as important for a generation of effective
adaptation strategies as reliable information about the user’s
individual cognitive profile, especially when such profile in-
formation has been obtained independent of task or context.

TIERED ADAPTATION
I have suggested above that a viable course of action to deal
with different frequencies of cognitive user profiles in a user
population may lie in combining largely qualitative measures
applied to the infrequent types with largely quantitative mea-
sures used for the more frequent types. This may imply that
different information obtained about a user’s individual pro-
file may be reliable to different degrees, depending on the
methods through which it was acquired. It may also mean
that adaptive interface behavior may have to be more or less
assertive: less, if it is based on less reliable bits of infor-
mation, more if it solidly grounds in reliable data. Such a
graduated approach fits well with a situation in which obtain-
ing any specific information about a given user-task pair (i.e.,
information about relevant cognitive factors which is either
individualized or situated, or, better, both) is nearly always
costly, with prices being chiefly paid in currencies of user
fatigue or motivation. We thus need an approach that facil-
itates the striking of a practical compromise between a user
interface designer’s wish to know as much about a user’s cog-
nitive profile as is possible and strong practical limitations in
obtaining such knowledge.

The model proposed here is based on a related sketch for sit-
uations of joint human-computer spatial reasoning and prob-
lem solving suggested by [5]. It conceptually extends [5] and
is not limited to applications of spatial reasoning or problem
solving. The model (see Fig. 1 for an illustration) consists
of three tiers of user-related data, in which information avail-
able about the cognitive profile of an individual user is grad-
ually refined from bottom to top level. The model is tiered,
as whenever more specific information is lacking, it may be
substituted by less specific information, albeit at a price, as
we will see. General cognitive factors are such as may be ob-
tained, for instance, through general models of human cog-



Figure 1: Sketch of the model with general, individual, and
situational cognitive factors. Ideally, knowledge would exist
up to the top tier for all factors relevant to adaption of a user
interface behavior for a specific task. Where such is not avail-
able, less specific values may substituted from lower tiers.

nition, e.g. regarding general (i.e. averaged) characteristics
of memory or attention, temporal characteristics of cognitive
processing, or general preferences of mental model construc-
tion such as those described for the third example above. In-
dividual cognitive factors of our modeled user are of the kind
that can be obtained through test instruments, such as for var-
ious relevant cognitive abilities or styles. The first and the
second of the examples discussed in the introduction would
likely benefit from an adaptation rooted in general and in-
dividual cognitive factors. Situational cognitive factors, as
shown on the top level, are such factors as can be derived
based on live measurements of (e.g., various psychophysical)
parameters about our user. With such measurements, one may
attempt to address questions of the following kind: Which
controls has the user gazed at over the course of the last five
seconds? Is the user’s current attention span likely to be lower
or higher than his usual individual level? Are there any indi-
cations that his usual expressions of learning styles should be
modified for the current task? etc. Situations related to the
first two examples are easily conceivable during which the
effectiveness of adaptive user interfaces may be improved by
utilizing a selection of situational cognitive factors in addition
to individual and general ones.

Through establishing the three levels, we get a number of
interesting properties. First, information about factors on
higher levels comes generally at higher costs than information
about factors on lowers levels. Information obtained higher
up is also more likely to be specific to a situation or task,
and will be less well suited for drawing general conclusions
about the cognitive profile of our user, or even about a group
of users. General cognitive factors exist on all three levels,
as only some of the more general assumptions and findings
about a user’s cognitive profile can and need be gradually re-
fined along the way up. The same holds true for individual
cognitive factors on levels two and three, and their relation-
ship with situational cognitive factors. Last, and perhaps most
importantly, we may use this model to sketch relationships
between groups of factors which become useful when we do
not have complete information about a user’s individual cog-
nitive profile (that is, virtually always). Ideally, our knowl-

edge would extend up to the top tier for all of those factors
that we judge to be relevant to effective adaption of a user
interface for a specific task under consideration. Whenever
such knowledge is incomplete, we may revert to using knowl-
edge about factors on lower tiers, thus effectively using our
model as one of graduated defaults. Such reversion to lower
tiers will come at a price, of course, as we will lose some
of our individualized or situated potential. In other words,
whenever we move from higher to lower tiers, more specific
values about cognitive factors and factor expressions will be
substituted by less specific ones. It seems likely that one may
often rather easily devise mechanisms of adaptive behavior
that can reflect such changes in specificity, for example, by
adapting a user interface less strongly (e.g., in less assertive
and more subtle ways) whenever information about the in-
dividual user’s cognitive properties is drawn from factors on
less reliable tiers.

CONCLUSIONS
I have discussed three chief challenges that need be addressed
to be able to productively harvest inter-individual differences
in cognitive user profiles for generating effective, adaptive be-
havior of user interfaces. It seems that at least challenges (1)
and (3) can only be adequately tackled inter-disciplinarily and
through collaboration of user interface designers and cogni-
tive scientists. In addition to incremental solutions for those
two challenges, such collaboration should, at best, also result
in a process of establishing a base of rules or best practices
of which cognitive factors frequently relate to an individual
user’s task performance, and how, and of which test instru-
ments are best to be used under which circumstances. The
reason why I raise this point is that, naturally, we will very
likely not see many user interface designers suddenly start-
ing a training in the cognitive sciences. This would neither
seem practicable, nor necessary. What is needed, however, is,
first, an increased awareness among user interface designers
for inter-individual differences rooted in their users’ cogni-
tion and, second, approaches to designing adaptive user in-
terfaces that permit scaling. This is to say that the approach
needs to be able to scale from simple, recipe-like stages (à la
”The ten most important rules for adapting your iOS app to
your users’ diversity in attentional resources”, perhaps simi-
larly simple and iconic as e.g. Shneiderman’s Golden Rules
[26] or Norman’s Design Principles [22]) to much more de-
tailed and focused stages in which specific cognitive factors
will need to be addressed based on specific theories or (live)
models of user’s cognitive processes.

One should of course ask whether the three challenges that
were raised here are the only challenges out there that cur-
rently keep us from creating effective adaptation of various
user interfaces to the individual user’s cognitive profile. The
answer is no, of course. For the purposes of this contribution,
I have tried to select and concentrate on the three challenges
which I currently rate as the most urgent and difficult ones.
Other, related challenges do, for instance, target questions of
how changes of users’ cognitive profiles over the course of a
day, a task, or a lifetime, can be tracked, modeled, and reacted
to, or of how users’ cognitive abilities and styles interact with
their emotional states. These are interesting questions, to be



sure; however, I would strongly recommend embarking on a
stepwise process, in which we tackle the most important chal-
lenges first, before moving on.

As a last point, I would like to argue that we are currently
seeing a significant increase in the frequency of HCI settings
that would benefit from a better adaptation of the involved in-
terfaces and systems to the individual user’s cognitive prop-
erties. Let me illustrate this point through two quick exam-
ples: First, eLearning. The use of MOOCs (Massive Open
Online Courses) is currently on a rapid upswing, no matter
if counted by the number of courses being offered or by at-
tendance (surpassing 230,000 individuals per course for some
courses, [16]). Also, participants are drawn from increasingly
heterogeneous groups [13]. One possibly effective response
to diminishing available instructor resources per participant
may lie in constructing eLearing systems that more closely
shadow the individual user’s learning progress than is cur-
rently the common case, and that better adapt to it, similarly
to how a good tutor would adapt material and methods to
a student’s progress. Such response would certainly bene-
fit in quality if designers of those eLearning systems would
know more about users’ individual cognitive profiles as well
as know better how to adapt interface behavior to these.

The second example is based on an extrapolation about the
frequency of human-computer interactive systems that are
asymmetric in the sense sketched above. The more com-
putational tools we see that employ processes which remain
partly opaque to the standard user (often because of reasons of
data or process complexity, e.g. in applications of computer-
supported design or big data analysis, or that employ tech-
niques of data mining or machine learning), the more fre-
quently HCI researchers and practitioners will need to ad-
dress issues of human-computer collaboration and negotia-
tion in which adequate cognitive user models will be key for
effective interaction. My bet is that, at least for as long as we
will continue to see an increase in the use of data-intensive
applications, we will see an increase of asymmetric interac-
tion settings that can greatly benefit from effectively adapting
to users’ individual cognitive profiles.
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